Answer:
The experimenter observed this experiment in a lab rather than natural world because it might be dangerous to the atmosphere if he does the experiment in the natural world and it was still an hypothesis so that's why he did it in the lab.
Answer:
The molar mass of the gas is 36.25 g/mol.
Explanation:
- To solve this problem, we can use the mathematical relation:
ν = 
Where, ν is the speed of light in a gas <em>(ν = 449 m/s)</em>,
R is the universal gas constant <em>(R = 8.314 J/mol.K)</em>,
T is the temperature of the gas in Kelvin <em>(T = 20 °C + 273 = 293 K)</em>,
M is the molar mass of the gas in <em>(Kg/mol)</em>.
ν = 
(449 m/s) = √ (3(8.314 J/mol.K) (293 K) / M,
<em>by squaring the two sides:</em>
(449 m/s)² = (3 (8.314 J/mol.K) (293 K)) / M,
∴ M = (3 (8.314 J/mol.K) (293 K) / (449 m/s)² = 7308.006 / 201601 = 0.03625 Kg/mol.
<em>∴ The molar mass of the gas is 36.25 g/mol.</em>
First, you mix the salt and sand with water, so the salt dissolves. Next, you filter the sand out, so you have the slat water and sand separated. Then, you evaporate the water, leaving the salt behind.
Answer:
radius = 156 pm
Explanation:
The relation between radius and edge length of unit cell of BCC is
r=a
/4
Given
a = 360 pm
Therefore
r = r = radius = 360
/4= 155.88 pm
Or
156 pm