Answer: Option (b) is the correct answer.
Explanation:
The given data is as follows.
mass = 0.508 g, Volume = 0.175 L
Temperature = (25 + 273) K = 298 K, P = 1 atm
As per the ideal gas law, PV = nRT.
where, n = no. of moles = 
Hence, putting all the given values into the ideal gas equation as follows.
PV =
1 atm \times 0.175 L =
= 71.02 g
As the molar mass of a chlorine atom is 35.4 g/mol and it exists as a gas. So, molar mass of
is 70.8 g/mol or 71 g/mol (approx).
Thus, we can conclude that the gas is most likely chlorine.
Answer:
HCl conc.= 6.0mol/L
Explanation:
From the dissociation of HCl= 1 mole H+ and 1mol Cl-, which is equivalent stoichiometrically in concentration to that of 1 mol HCl,
It is more slippery, and it is heavier
<span>283.89 g/mol is the molar mass of tetraphosphorus decoxide</span>
The amount of heat needed to raise the temperature of an object is obtained through the equation,
H = m(cp)(20) + m (heat of fusion) + m(cp) (dT)
where H is heat, m is mass, cp is specific gravity, and dT is the change in temperature. The specific gravity of water is 0.5 cal/g.C. The third term is for water and cp is equal to 1 cal/g.C. Substituting the values,
815 cal = (5 g)(0.5 cal/g.C)(20C) + (80 cal/g)(5 g) + 5(1)(T2)
The value of T2 is 73 degrees C.