Answer:
E = 3.8 kJ
Explanation:
Given that,
The mass of the object, m = 10 g = 0.01 kg
The heat of fusion of aluminum is 380 kJ/kg
We need to find the energy required to melt the mass of the aluminium. It can be calculated as follows:
E = mL
So,
E = 0.01 × 380
E = 3.8 kJ
So, the energy required to melt the mass is equal 3.8 kJ.
Answer:
5. All of the answers are yes.
Explanation:
<h2><u><em>
PLEASE MARK AS BRAINLIEST!!!!!</em></u></h2>
Not sure.can you give me a clue?
The ratio of the maximum photoelectron kinetic energy to the work function will be 3:1.
<h3 /><h3>What is the photoelectric effect?</h3>
When a medium receives electromagnetic radiation, electrostatically charged particles are emitted from or inside it.
The emission of ions from a steel plate when light falls on it is a common definition of the effect. The substance could be a solid, liquid, or gas; and the released particles could be protons or electrons.
A particular metal emits photoelectrons when exposed to light with energy three times its work function:

The ratio of the maximum photoelectron kinetic energy to the work function will be;

Hence, the ratio of the maximum photoelectron kinetic energy to the work function will be 3:1.
To learn more about the photoelectric effect refer to the link;
brainly.com/question/9260704
#SPJ1