EASY AS PIE AND I LIKE PIE
Calcium iodide (CaI2) is an ionic bond, which means that electrons are transferred. In order for Ca to become the ion Ca2+, the calcium atom must lose 2 electrons. (Electrons have a negative charge, so when an atom loses 2 electrons, its ion becomes more positive.) In order for I to become the ion I1−, the iodine atom must gain 1 electron. (When an atom gains an electron, its ion will be more negative.) However, the formula for calcium iodide is CaI2 - there are 2 iodine ions present. This makes sense because the iodine ion has a charge of -1, so two iodine ions have to be present to cancel out the +2 charge of the calcium ion. Therefore, the calcium atom transfers 2 valence electrons, one to each iodine atom, to form the ionic bond.
IF WRONG, SORRY
Answer:
3.14 grams of ammonium thiocyanate must be used to react completely with 6.5 g barium hydroxide octahydrate.
Explanation:

The balance chemical equation is :

Mass of barium hydroxide octahydrate = 6.5 g
Moles of barium hydroxide octahydrate = 
According to reaction, 2 moles of ammonium thiocyanate reacts with1 mole of barium hydroxide octahydrate. The 0.020635 moles of barium hydroxide octahydrate will react with:

Mass of 0.04127 moles of ammonium thiocyanate;

3.14 grams of ammonium thiocyanate must be used to react completely with 6.5 g barium hydroxide octahydrate
Answer: They always have the same functional groups.
Explanation:
use quizlet too if you have toooo
In my opinion, the best answer among the choices listed above is the first option. The major reason for chemical bonding is <span>for atoms to gain the stability of the octet. In general, chemical reactions happen in order for substances achieve stability or appropriately achieve equilibrium.</span>
Answer:
The correct answers are: <u>Each oxygen of carbonate ion has -2/3 or -0.67 charge.</u>
<u>Bond order of each carbon‑oxygen bond in the carbonate ion</u> = <u>1.33</u>
Explanation:
The carbonate ion (CO₃²⁻) is an organic compound, in which a carbon atom is covalently bonded to three oxygen atoms. The net formal charge on a carbonate ion is −2.
The carbonate ion is <u>resonance stabilized</u> and has three equivalent resonating structures, which exhibits that all the three carbon-oxygen bonds in a carbonate ion are equivalent.
In the resonance hybrid of carbonate ion,<u> the negative charge is equally delocalized on all the three oxygen atoms. </u>
<u>Thus, each bonded oxygen has -2/3 or -0.67 charge.</u>
<u />
In a carbonate ion there is one double bond oxygen (C=O) and two single bonded oxygen (C-O). Bond order of 1 C=O is 2 and bond order of C-O is 1.
∴ <u>Bond order</u> = sum of all bond orders ÷ number of bonding groups = (2+1+1) ÷ 3 = <u>1.33</u>