Answer:
The magnitude of magnetic field at given point =
×
T
Explanation:
Given :
Current passing through both wires = 5.0 A
Separation between both wires = 8.0 cm
We have to find magnetic field at a point which is 5 cm from any of wires.
From biot savert law,
We know the magnetic field due to long parallel wires.
⇒ 
Where
magnetic field due to long wires,
,
perpendicular distance from wire to given point
From any one wire
5 cm,
3 cm
so we write,
∴ 

![B =\frac{ 4\pi \times10^{-7} \times5}{2\pi } [\frac{1}{0.03} + \frac{1}{0.05} ]](https://tex.z-dn.net/?f=B%20%3D%5Cfrac%7B%204%5Cpi%20%5Ctimes10%5E%7B-7%7D%20%5Ctimes5%7D%7B2%5Cpi%20%7D%20%5B%5Cfrac%7B1%7D%7B0.03%7D%20%2B%20%5Cfrac%7B1%7D%7B0.05%7D%20%5D)

Therefore, the magnitude of magnetic field at given point = 
D.to bring light together
Well you need to have lots of heat
Motion of a ball thrown by a person upwards and caught after some time is an example of motion in which displacement of the particle is zero but acceleration is not zero in journey.
The displacement of the ball is zero because the starting and end point of the motion are same, i.e, the person's hands.During its motion, the acceleration of ball is constant and non zero called as acceleration due to gravity, g= -9.8 m/s². The velocity of ball is continuously changing. It first decreases during the upward motion of the ball and then increases during the downward journey.The acceleration remains constant and non zero all the time.