Julia walks from the park, which is six blocks east of her house, to the store, which is three blocks east of her house. Julia walks for 5 minutes. This walk's average speed will be 1.2 blocks per minute. Option B is correct.
<h3>What is displacement?</h3>
Displacement is defined as the shortest distance between the two points. Distance is the horizontal length covered by the body. While displacement is the shortest distance between the two points.
Displacement is a vector quantity .its unit is m.
The average velocity on this walk will be;

Hence option B is correct.
To learn more about displacement refer to the link; brainly.com/question/10919017
#SPJ1
Answer: Yes.
Explanation: It is clearly stated in Newton’s first law of physics that an object will not change its motion unless a force acts on.
Answer:
130m
Explanation:
You just have to multiply velocity by the time traveled:
100m/s * 1.3s = 130m!
The potential across the capacitor at t = 1.0 seconds, 5.0 seconds, 20.0 seconds respectively is mathematically given as
- t=0.476v
- t=1.967v
- V2=4.323v
<h3>What is the potential across the capacitor?</h3>
Question Parameters:
A 1. 0 μf capacitor is being charged by a 9. 0 v battery through a 10 mω resistor.
at
- t = 1.0 seconds
- 5.0 seconds
- 20.0 seconds.
Generally, the equation for the Voltage is mathematically given as
v(t)=Vmax=(i-e^{-t/t})
Therefore
For t=1
V=5(i-e^{-1/10})
t=0.476v
For t=5s
V2=5(i-e^{-5/10})
t=1.967
For t=20s
V2=5(i-e^{-20/10})
V2=4.323v
Therefore, the values of voltages at the various times are
- t=0.476v
- t=1.967v
- V2=4.323v
Read more about Voltage
brainly.com/question/14883923
Complete Question
A 1.0 μF capacitor is being charged by a 5.0 V battery through a 10 MΩ resistor.
Determine the potential across the capacitor when t = 1.0 seconds, 5.0 seconds, 20.0 seconds.