1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
swat32
3 years ago
10

When dots are placed on a page from a laser printer, they must be close enough so that you do not see the individual dots of ink

. To do this, the separation of the dots must be less than Raleigh's criterion. Take the pupil of the eye to be 3.2 mm and the distance from the paper to the eye of 42 cm; find the maximum separation (in cm) of two dots such that they cannot be resolved. (Assume the average wavelength of visible light is 550 nm.)
Physics
1 answer:
Dovator [93]3 years ago
4 0

Answer:

 y <8 10⁻⁶ m

Explanation:

For this exercise, they indicate that we use the Raleigh criterion that establishes that two luminous objects are separated when the maximum diffraction of one of them coincides with the first minimum of the other.

 Therefore the diffraction equation for slits with m = 1 remains

             a sin θ = λ

in general these experiments occur for oblique angles so

             sin θ = θ

             θ = λ / a

in the case of circular openings we must use polar coordinates to solve the problem, the solution includes a numerical constant

           θ = 1.22 λ / a

The angles in these measurements are taken in radians, therefore

          θ = s / R

as the angle is small the arc approaches the distance s = y

          y / R = 1.22 λ / s

          y = 1.22 λ R / a

let's calculate

            y = 1.22 500 10⁻⁹ 0.42 / 0.032

            y = 8 10⁻⁶ m

with this separation the points are resolved according to the Raleigh criterion, so that it is not resolved (separated)

                 y <8 10⁻⁶ m

You might be interested in
Sound waves are classified as which type of wave?answer
iren [92.7K]
The answer is D. I hope this helps
4 0
3 years ago
Do electric field lines actually exist?​
konstantin123 [22]

Answer: No

Explanation:they do not exist electric field lines are only imaginary

8 0
3 years ago
Any organism that has a skeletal sytem
Katena32 [7]
Vertebrate is the answer I think.
6 0
3 years ago
Read 2 more answers
What is the proper hand position when driving straight ahead
vekshin1

NHTSA (National Highway Traffic Safety Administration) now recommends the technique known as 9 and 3. Place your left hand on the left portion of the steering wheel in a location approximate to where the nine would be if the wheel was a clock. Your right hand should be placed on the right portion of the wheel where the three would be located.

7 0
3 years ago
A 5.00-kg object is attached to one end of a horizontal spring that has a negligible mass and a spring constant of 280 N/m. The
lina2011 [118]

Answer:

1) v = 0.45 m/s

2) v = 0.65 m/s

3) v = 0.75 m/s  

Explanation:

1) We can find the speed of the object by conservation of energy:

E_{i} = E_{f}

\frac{1}{2}kx^{2} = \frac{1}{2}kx^{2} + \frac{1}{2}mv^{2}

Where:

k: is the spring constant = 280 N/m

v: is the speed of the object =?

m: is the mass of the object = 5.00 kg

x: is the displacement of the spring

\frac{1}{2}280N/m(0.10 m)^{2} = \frac{1}{2}280N/m(0.08 m)^{2} + \frac{1}{2}5.00 kgv^{2}                              

v = \sqrt{\frac{280N/m(0.10 m)^{2} - 280N/m(0.08 m)^{2}}{5.00 kg}} = 0.45 m/s

2) When the object is 5.00 cm (0.050 m) from equilibrium, the speed of the object is:

\frac{1}{2}kx^{2} = \frac{1}{2}kx^{2} + \frac{1}{2}mv^{2}    

\frac{1}{2}280N/m(0.10 m)^{2} = \frac{1}{2}280N/m(0.05 m)^{2} + \frac{1}{2}5.00 kgv^{2}      

v = \sqrt{\frac{280N/m(0.10 m)^{2} - 280N/m(0.05 m)^{2}}{5.00 kg}} = 0.65 m/s      

 

3) When the object is at the equilibrium position, the speed of the object is:

\frac{1}{2}kx^{2} = \frac{1}{2}kx^{2} + \frac{1}{2}mv^{2}    

\frac{1}{2}280N/m(0.10 m)^{2} = \frac{1}{2}280N/m(0 m)^{2} + \frac{1}{2}5.00 kgv^{2}      

v = \sqrt{\frac{280N/m(0.10 m)^{2}}{5.00 kg}} = 0.75 m/s

I hope it helps you!                                                                                        

8 0
3 years ago
Other questions:
  • In a football game, a defensive lineman exerts a force upon an offensive lineman, causing the offensive lineman to be accelerate
    12·2 answers
  • The Hall effect can be used to calculate the charge-carrier number density in a conductor. A conductor carrying current of 2.0 A
    6·1 answer
  • If all the light waves are absorbed by an object then the object will appear A) black B) brown C) gray D) white
    15·1 answer
  • Time shifting occurs when _______.
    15·2 answers
  • The popular GPS devices that people use to find directions while driving use which type of satellite system?
    7·2 answers
  • (ii) Electromagnetic waves transfer energy.
    9·1 answer
  • FREE BRAINIEST IF YOU ANSWER THIS
    11·1 answer
  • A car has a weight of 25000 N and its brakes can apply a maximum force of 628 N to stop it. The car is initially moving at a spe
    12·1 answer
  • The speed of propagation of the action potential (an electrical signal) in a nerve cell depends (inversely) on the diameter of t
    11·1 answer
  • A solid metal ball of radius 1.5 cm bearing a charge of -15 nC is located near a hollow plastic ball of radius 1.9 cm bearing a
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!