Answer:
v = 6i + 12j + 4k
Explanation:
Find the magnitude of the direction vector.
√(3² + 6² + 2²) = 7
Normalize the direction vector.
3/7 i + 6/7 j + 2/7 k
Multiply by the magnitude of v.
v = 14 (3/7 i + 6/7 j + 2/7 k)
v = 6i + 12j + 4k
-- Electrons are leptons. There are <em>three</em> electrons in each neutral Lithium atom.
The last two parts of the question are absurd.
-- Bonbons are candy, not atomic particles. A bonbon cannot fit into a Lithium atom.
-- A pentagon is a closed geometric figure that has five sides. Although you could, in principle, have a pentagon small enough to fit into a Lithium atom, you could never find a piece of paper small enough to draw it on.
Answer:
14.0 m
25.1 m/s
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration
Distance traveled in the reaction time
Distance = Speed × Time


Distance in which the car will stop is 10+20 = 30.0 m
So, the car will not hit the deer
Distance between the car and deer is 44-30 = 14.0 m



Maximum speed of the car by which it will not hit the deer is 25.1 m/s
Answer:
F = 50[N], to the left.
v = 10.52 [m/s]
Explanation:
<u>First problem</u>
<u />
In order to solve this problem we must apply Newton's laws, in such a way that we must perform a summation of forces on the horizontal axis. In this way we will analyze each force and the direction of action.
The offensive player is applying a force of 100N to the right, while the defensive player applies a force of 150N to the left. In this way performing the summation of forces we have.
100 - 150 = F
F = - 50 [N]
Note: The negative sign indicates that the resulting force is to the left.
<u>Second problem</u>
<u />
We must remember that the definition of speed is equal to the relationship between distance over time.
x = distance = 100 [m]
t = time = 9.5 [s]
v = x/t
v = 100/9.5
v = 10.52 [m/s]
<u />