1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gizmo_the_mogwai [7]
2 years ago
14

What forces control the strength of the tides

Physics
2 answers:
Alona [7]2 years ago
8 0

Answer: gravity is one major force that creates tides

Explanation:

in 1687, sir Isaac newton explained that ocean tides result from the gravitational attraction of the sun and the moon on the oceans of the earth

Colt1911 [192]2 years ago
7 0

Answer:

Gravity is one major force that creates tides. In 1687, Sir Isaac Newton explained that ocean tides result from the gravitational attraction of the sun and moon on the oceans of the earth (Sumich, J.L., 1996).

Explanation:

I hope this helps.

You might be interested in
Two 10-cm-diameter metal plates 1.0 cm apart are charged to {12.5 nC. They are suddenly connected together by a 0.224-mm- diamet
Alekssandra [29.7K]

Answer:

(a).The maximum current in the wire is 4.217\times10^{5}\ A.

(b). The electric field in the wire is 11.2\times10^{5}\ N/C.

(c).The current also decrease with time.

(d). The total amount of energy dissipated in the wire is 1.126\times10^{-5}\ J

Explanation:

Given that,

Diameter of metal plates = 10 cm

Distance between the plates = 1.0 cm

Charged = 12.5 nC

Diameter of copper wire = 0.224 mm

We need to calculate the cross section area of the plates

Using formula of area

A=\pi r^2

Put the value into the formula

A=\pi\times(5\times10^{-2})^2

A=7.85\times10^{-3}\ m^2

We need to calculate the capacitor

Using formula of capacitor

C=\dfrac{\epsilon_{0}A}{d}

Put the value into the formula

C=\dfrac{8.85\times10^{-12}\times7.85\times10^{-3}}{1.0\times10^{-2}}

C=6.94\times10^{-12}\ F

We need to calculate the resistance of the wire

Using formula of resistivity

R=\dfrac{\rho l}{A}

Put the value into the formula

R=\dfrac{1.7\times10^{-8}\times1.0\times10^{-2}}{\pi\times(0.1125\times10^{-3})^2}

R=4.27\times10^{-3}\ \Omega

We need to calculate the voltage

Using formula of charge

q=CV

V=\dfrac{q}{C}

Put the value into the formula

V=\dfrac{12.5\times10^{-9}}{6.94\times10^{-12}}

V=1.801\times10^{3}\ V

(a). We need to calculate the current

Using formula of current

I=\dfrac{V}{R}

I=\dfrac{1.801\times10^{3}}{4.27\times10^{-3}}

I=421779.85\ A

I=4.217\times10^{5}\ A

(b). We need to calculate the electric field

Using formula of electric field

E=\dfrac{kq}{r^2}

Put the value into the formula

E=\dfrac{9\times10^{9}\times12.5\times10^{-9}}{(1.0\times10^{-2})^2}

E=11.2\times10^{5}\ N/C

The electric field in the wire is 11.2\times10^{5}\ N/C.

(c). In this case, the voltage between the capacitor plates decreases as the charge decreases with time.

The current is directly proportional to the voltage between the plates .

Hence, The current also decrease with time.

(d). We need to calculate the total amount of energy dissipated in the wire

Using formula of energy

E=\dfrac{1}{2}CV^2

Put the value into the formula

E=\dfrac{1}{2}\times6.94\times10^{-12}\times(1.801\times10^{3})^2

E=1.126\times10^{-5}\ J

The total amount of energy dissipated in the wire is 1.126\times10^{-5}\ J

Hence, (a).The maximum current in the wire is 4.217\times10^{5}\ A.

(b). The electric field in the wire is 11.2\times10^{5}\ N/C.

(c).The current also decrease with time.

(d). The total amount of energy dissipated in the wire is 1.126\times10^{-5}\ J

8 0
3 years ago
a 5.5 g dart is fired into a block of wood with a mass of 22.6 g. the wood block is initially at rest on a 1.5 m tall post. afte
IgorLugansk [536]
<span>From the problem alone we can say that the dart and the block of wood combined into a single object moving together at the end. With that clue we know that the collision is an inelastic collision. The formula of an inelastic collision is:

m_{1}v_{1i}+m_{2}v_{2i}=(m_{1}+m_{2})v_{f}

First let us sort out our given:Mass should be in kg to get the proper answer. Now let's assign m1 as the mass of the dart and m2 as the mass of the block. 
m1 = 5.5g

5.5g x \frac{1kg}{1000g}= 0.0055kg

m2 = 22.6g

22.6g x \frac{1kg}{1000g}= 0.0226kg

So now we settled that we can set our given as:
M1 = .0055 kg
v1i = ?
M2 = 0.0226 kg
v2i = 0 m/s
dx = 2.5 m
dy = -1.5 m

Now you can see that we have 2 unknowns: v1i and vf. We need the vf to solve for the initial velocity of the dart or object 1. We have other given to consider, so we can make use of that to get our missing vf. 

Now, vf is the horizontal velocity after the collision. We do this by first using the equations for projectiles considering that we have an x and y dimension to consider. We use the y dimension to get the x. 
</span>

dy = -1.5 m 

a = 9.8m/s^2

viy = 0 (take note that the initial vertical velocity is 0)

t = ?

<span>We can use the UAM equations to solve for the time in the y-dimension (vertical) to get the horizontal velocity. 

dy = v_{iy}t +  \frac{1}{2} at^{2}</span>

1.5 = (0)t+\frac{1}{2} (9.8)t^{2}

<span>1.5 = \frac{1}{2} (9.8)t^{2}

\frac{(2)(1.5)}{9.8}=t^{2}

\frac{(3)}{9.8}=t^{2}

\sqrt{0.3061} = \sqrt{t^{2}

0.553s = t

Now using this, we can get the horizontal (x-dimension) velocity using the formula:
v_{x} =d_{x}t and our given earlier for the horizontal distance is 2.5m and we solved for time 0.553s. Let's put that into our equation:
v_{x} =d_{x}t
v_{x} =(2.5m)(0.553s) 
v_{x} =4.52m/s

Now we finally have our vf or velocity after the collision. Now let's get back to the equation.

m_{1}v_{1i}+m_{2}v_{2i}=(m_{1}+m_{2})v_{f}

From this we can derive the equation for v1i by isolating it. 

v_{1i}= \frac{((m_{1}+m_{2})v_{f})-(m_{2}v_{2i})}{m_{1}}

Now let's put in all our given and what we solved:

v_{1i}= \frac{((0.0055kg+0.0226kg)4.52m/s)-((0.0226kg)0m/s)}{0.0055kg}

v_{1i}= \frac{(0.0281kg)4.52m/s)}{0.0055kg}

v_{1i}= \frac{0.127012kg.m/s}{0.0055kg}

v_{1i}= 23.09m/s

The initial speed of the dart is 23.09 m/s or 23.10 m/s.</span>
7 0
3 years ago
How can you determine the type of radiation an atom emits as its nucleus decays
Pie
Gamma raidiation and beta and alpha particles
7 0
3 years ago
As Luke rides his bike down a hill, potential energy is converted to kinetic energy. What is this an example of?
Musya8 [376]

Answer:

If I am correct, the answer is D. Law of conservation of energy

Explanation:

the potential energy "converts" to kinetic once Luke is in motion.

5 0
2 years ago
Describa con sus palabras que fue lo que descubrio galileo en su legendario experimento en la torre inclinada de pisa
german

Answer:

En 1589 Galileo realizó un experimento lanzando dos bolas de diferentes masas desde la famosa Torre Inclinada de Pisa para demostrar que el tiempo de caída es independiente de la masa de la bola. A través de este experimento, Galileo descubrió que los cuerpos caían casi simultáneamente, refutando la teoría de Aristóteles de que la tasa de caída era proporcional a la masa del cuerpo.  

Debido a la imperfección de los equipo de medición de esa época, la caída libre de los cuerpos era casi imposible de estudiar. En busca de una forma de reducir la velocidad de movimiento, Galileo reemplazó la caída libre por rodar sobre una superficie inclinada, donde había velocidades y resistencia del aire significativamente más bajas. Se notó que con el tiempo, la velocidad del movimiento aumenta: los cuerpos se mueven con aceleración. Se concluyó que la velocidad y la aceleración no dependen ni de la masa ni del material de la pelota.

 

5 0
3 years ago
Other questions:
  • Plyometric helps strengthen your bones true or false
    11·1 answer
  • How could you figure out how fast you can run
    11·2 answers
  • What term is given to a substance that can dissolve in a particular liquid?
    12·2 answers
  • a stone is dropped into a deep well and is heard to hit the water 3.41 s after being dropped. determine the depth of the well. .
    10·1 answer
  • a naturally occurring element has a melting point of 240°C and a boiling point of 300°C. A.identify the elements state of matter
    10·1 answer
  • What is the wave of depolarization called?
    13·1 answer
  • What factors determine whether and how a populations size changes
    10·1 answer
  • A lumberjack (mass = 103 kg) is standing at rest on one end of a floating log (mass = 277 kg) that is also at rest. The lumberja
    15·1 answer
  • PLEASE ANSWER ASAP!
    15·1 answer
  • What is so soothing about the ocean? And why are some people afraid of the ocean?
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!