For example, when you are at
work. If you love what you are doing, you will feel happy, contented and your
mind will be at ease. It can give you a positive attitude towards your work no
matter how difficult or easy it may be. After persevering your positivity, you
will still continue and do what you really love by being productive.
Answer:
Required charge
.

Explanation:
Given:
Diameter of the isolated plastic sphere = 25.0 cm
Magnitude of the Electric field = 1500 N/C
now
Electric field (E) is given as:

where,
k = coulomb's constant = 9 × 10⁹ N
q = required charge
r = distance of the point from the charge where electric field is being measured
The value of r at the just outside of the sphere = 
thus, according to the given data

or

or
Required charge
.
Now,
the number of electrons (n) required will be

or

or

Answer:
Alpha = ω^2 R where R is radius of blade
g = w^2 r where r is distance from center
ω^2 R = 11.5 ω^2 r
R / r = 11.5 / 9.8 = 1.17
Or r = .852 R
Since the angular acceleration depends on both R and ω it seems that one can only get r as it depends on R
Answer:
Rectangular path
Solution:
As per the question:
Length, a = 4 km
Height, h = 2 km
In order to minimize the cost let us denote the side of the square bottom be 'a'
Thus the area of the bottom of the square, A = 
Let the height of the bin be 'h'
Therefore the total area, 
The cost is:
C = 2sh
Volume of the box, V =
(1)
Total cost,
(2)
From eqn (1):

Using the above value in eqn (1):


Differentiating the above eqn w.r.t 'a':

For the required solution equating the above eqn to zero:


a = 4
Also

The path in order to minimize the cost must be a rectangle.
It’s D.Earths northern hemisphere is tilted toward the sun