1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
igor_vitrenko [27]
3 years ago
13

Define electric potential energy

Physics
2 answers:
Inessa05 [86]3 years ago
6 0
Electric potential energy, or Electrostatic potential energy, is a potential energy (measured in joules) that results from conservative Coulomb forces and is associated with the configuration of a particular set of point charges within a defined system. An object may have electric potential energy by virtue of two key elements: its own electric charge and its relative position to other electrically charged objects.
Verizon [17]3 years ago
3 0
Electric potential energy, or Electrostatic potential energy, is a potential energy that results from conservative Coulomb forces and is associated with the configuration of a particular set of point charges within a defined system.
You might be interested in
A boulder on the mythical planet mongo drops off a cliff and falls from rest 1000 m in 10.0 s. (A) what's the initial speed of t
Amiraneli [1.4K]
At rest, initial speed zero

x=v(initial) t+ 1/2 at^2
-1000m=0(10) + 1/2 a 10^2
-1000m=50a
a = -20 m/s^2
6 0
3 years ago
Please help right now!!! MARK BRAINLIEST
hram777 [196]
For #2.
(A) The resultant velocity of the boat is the hypotenuse of a right triangle with the sides being the river and boat velocities.
The Pythagorean theorem: h^2 = a^2 + b^2
then you can use: soh cah toa to find any angles.
(B) The river velocity is not opposing the direction of travel, it increases the boats velocity from 2m/s to 2.5m/s
5 0
3 years ago
What respiratory structure controls breathing?
shutvik [7]

Lungs is what helps u breath

3 0
3 years ago
Read 2 more answers
Estimate how far apart the rays of deepest red and deepest violet light are as they exit the bottom surface. assume nred = 1.57
Harlamova29_29 [7]
We begin by noting that the angle of incidence is the one that's taken with respect to the normal to the surface in question. In this case the angle of incidence is 30. The material is Flint Glass according to the original question. The refractive indez of air n1=1, the refractive index of red in flint glass is nred=1.57, finally for violet in the glass medium is nviolet=1.60. Snell's Law dictates:
n_1sin(\theta_1)=n_2sin(\theta_2)
Where \theta_2 differs for each wavelenght, that means violet and red will have different refractive indices in the glass.
In the second figure provided details are given on which are the angles in question, \Delta x is the distance between both rays.
\theta_{2red}=Asin(\frac{sin(30)}{1.57})\approx 18.5705
\theta_{2violet}=Asin(\frac{sin(30)}{1.60})\approx 18.21
At what distance d from the incidence normal will the beams land at the bottom?
For violet we have:
d_{violet}=h.tan(\theta_{2violet})\approx 0.0132m
For red we have:
d_{red}=h.tan(\theta_{2red})\approx 0.0134m
We finally have:
\Delta x=d_{red}-d_{violet}\approx2.8\times10^{-4}m


6 0
3 years ago
A 4.67-g bullet is moving horizontally with a velocity of +357 m/s, where the sign + indicates that it is moving to the right (s
Leni [432]

Answer:

(a)0.531m/s

(b)0.00169

Explanation:

We are given that

Mass of bullet, m=4.67 g=4.67\times 10^{-3} kg

1 kg =1000 g

Speed of bullet, v=357m/s

Mass of block 1,m_1=1177g=1.177kg

Mass of block 2,m_2=1626 g=1.626 kg

Velocity of block 1,v_1=0.681m/s

(a)

Let velocity of the second block  after the bullet imbeds itself=v2

Using conservation of momentum

Initial momentum=Final momentum

mv=m_1v_1+(m+m_2)v_2

4.67\times 10^{-3}\times 357+1.177(0)+1.626(0)=1.177\times 0.681+(4.67\times 10^{-3}+1.626)v_2

1.66719=0.801537+1.63067v_2

1.66719-0.801537=1.63067v_2

0.865653=1.63067v_2

v_2=\frac{0.865653}{1.63067}

v_2=0.531m/s

Hence, the  velocity of the second block after the bullet imbeds itself=0.531m/s

(b)Initial kinetic energy before collision

K_i=\frac{1}{2}mv^2

k_i=\frac{1}{2}(4.67\times 10^{-3}\times (357)^2)

k_i=297.59 J

Final kinetic energy after collision

K_f=\frac{1}{2}m_1v^2_1+\frac{1}{2}(m+m_2)v^2_2

K_f=\frac{1}{2}(1.177)(0.681)^2+\frac{1}{2}(4.67\times 10^{-3}+1.626)(0.531)^2

K_f=0.5028 J

Now, he ratio of the total kinetic energy after the collision to that before the collision

=\frac{k_f}{k_i}=\frac{0.5028}{297.59}

=0.00169

5 0
3 years ago
Other questions:
  • How do mass and speed affect kinetic energy?
    12·1 answer
  • In terms of speed and direction in what ways can an object accelerate
    11·2 answers
  • A man 6.00 ft tall approaches a street light 15.0 ft above the ground at the rate of 4.00 ​ft/s. How fast is the end of the​ man
    13·1 answer
  • Using energy considerations and assuming negligible air resistance, show that a rock thrown from a bridge 20.0 m above water wit
    8·1 answer
  • Create a mathematical model for the pressure variation as a function of position and time for a sound wave, given that the wavel
    12·1 answer
  • would it be possible for a small man running fast to have the same kinetic energy as a large man who runs slowly?
    8·1 answer
  • A battery with an emf of 4 V and an internal resistance of 0.7 capital omega is connected to a variable resistance R. Find the c
    15·1 answer
  • A sound wave travels with a velocity of 1.5 m/s and has a frequency of 500 Hz. What is its wavelength?
    12·1 answer
  • Can someone help me in this please any one good in science.
    14·1 answer
  • Which refers to the number of wavelengths that pass a fixed point in a second?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!