Complete Question
Q. Two go-carts, A and B, race each other around a 1.0km track. Go-cart A travels at a constant speed of 20m/s. Go-cart B accelerates uniformly from rest at a rate of 0.333m/s^2. Which go-cart wins the race and by how much time?
Answer:
Go-cart A is faster
Explanation:
From the question we are told that
The length of the track is
The speed of A is
The uniform acceleration of B is
Generally the time taken by go-cart A is mathematically represented as
=>
=>
Generally from kinematic equation we can evaluate the time taken by go-cart B as
given that go-cart B starts from rest u = 0 m/s
So
=>
=>
Comparing we see that is smaller so go-cart A is faster
The answer is going to be element #29 Copper makes blue
Red:#38
Green:#56
Pink:#3
Yellow:#11
Gold:#20
Hopes This Helps
To solve this problem it is necessary to apply the law of Malus which describes the change in the Intensity of Light when it crosses a polarized surface.
Mathematically the expression is given as
Where,
= Initial Intensity
I = Final Intensity after pass through the polarizer
= Angle between the polarizer and the light
Since it is sought to reduce the intensity by half the relationship between the two intensities will be given as
Using the Malus Law we have,
Angle with respect to maximum is
Answer:
Magnitude the net torque about its axis of rotation is 2.41 Nm
Solution:
As per the question:
The radius of the wrapped rope around the drum, r = 1.33 m
Force applied to the right side of the drum, F = 4.35 N
The radius of the rope wrapped around the core, r' = 0.51 m
Force on the cylinder in the downward direction, F' = 6.62 N
Now, the magnitude of the net torque is given by:
where
= Torque due to Force, F
= Torque due to Force, F'
Now,
The net torque comes out to be negative, this shows that rotation of cylinder is in the clockwise direction from its stationary position.
Now, the magnitude of the net torque:
Answer:
True
Explanation:
Buoyancy is the most important factors for divers. All they do underwater is to observe the life down there but they also have some other work. However, divers may want to be negatively buoyant when they want to go on deep exploration. When they reach a destination, they may want to observe and neutral buoyancy then will be useful. When they want to go back on surface, they’ll utilize positive buoyancy.