Answer:
600Hz
Explanation:
In electrical systems of alternating current, the harmonics are, as in acoustics, frequencies multiples of the fundamental working frequency of the system and whose amplitude decreases as the multiple increases. For example, if we have systems fed by the 50 Hz network, harmonics of 100, 150, 200, etc. may appear.
In our case having a fundamental wave of 100Hz, I can have harmonics of 200,300,400, ..., 600Hz
Answer:
it would make sense because a larger body could produce more body heat.
In some unusual applications of unusual components, I can think of unusual electric circuits where a switch may be connected in parallel with a device in order to control it.
But I'm sure this is not what's intended in a question on the high-school level.
Until you get in a situation with tricky applications in a tricky circuit, your switches will always be connect <em>in series</em> with the devices they control.
Answer:
Fr = 48 [N] forward.
Explanation:
Suppose the movement is on the X axis, in this way we have the force of the engine that produces the movement to the right, while the force produced by the brake causes the vehicle to decrease its speed in this way the sign must be negative.
∑F = Fr
![F_{engine}-F_{brake} =F_{r}\\F_{r}=79-31\\F_{r}=48[N]](https://tex.z-dn.net/?f=F_%7Bengine%7D-F_%7Bbrake%7D%20%3DF_%7Br%7D%5C%5CF_%7Br%7D%3D79-31%5C%5CF_%7Br%7D%3D48%5BN%5D)
The movement remains forward, since the force produced by the movement is greater than the braking force.
Answer:
First Law
Explanation:
I learned this in 6th grade