Answer:
Recall that the electric field outside a uniformly charged solid sphere is exactly the same as if the charge were all at a point in the centre of the sphere:

lnside the sphere, the electric field also acts like a point charge, but only for the proportion of the charge further inside than the point r:

To find the potential, we integrate the electric field on a path from infinity (where of course, we take the direct path so that we can write the it as a 1 D integral):

=![\frac{q}{4\pi e_{0} } [\frac{1}{R} -\frac{r^{2}-R^{2} }{2R^{3} } ]](https://tex.z-dn.net/?f=%5Cfrac%7Bq%7D%7B4%5Cpi%20e_%7B0%7D%20%7D%20%5B%5Cfrac%7B1%7D%7BR%7D%20-%5Cfrac%7Br%5E%7B2%7D-R%5E%7B2%7D%20%20%7D%7B2R%5E%7B3%7D%20%7D%20%5D)
∴NOTE: Graph is attached
The answer is cardiovascular.
Answer:
200 mL
Explanation:
Given that,
Initial volume, V₁ = 300 mL
Initial pressure, P₁ = 0.5 kPa
Final pressure, P₂ = 0.75 kPa
We need to find the final volume of the sample if pressure is increased at constant temperature. It is based on Boyle's law. Its mathematical form is given by :

V₂ is the final volume

So, the final volume of the sample is 200 mL.
It will take 6.42 s for the ball that is dropped from a height of 206 m to reach the ground.
From the question given above, the following data were obtained:
Height (H) = 206 m
<h3>Time (t) =? </h3>
NOTE: Acceleration due to gravity (g) = 10 m/s²
The time taken for the ball to get to the ground can be obtained as follow:
H = ½gt²
206 = ½ × 10 × t²
206 = 5 × t²
Divide both side by 5

Take the square root of both side

<h3>t = 6.42 s</h3>
Therefore, it will take 6.42 s for the ball to get to the ground.
Learn more: brainly.com/question/24903556