<em>Energy</em><em> </em><em>can</em><em> </em><em>neither </em><em>be</em><em> </em><em>created </em><em>nor</em><em> </em><em>be</em><em> </em><em>destroyed</em><em> </em><em>but</em><em> </em><em>can</em><em> </em><em>be</em><em> </em><em>converted</em><em> </em><em>from</em><em> </em><em>one</em><em> </em><em>form</em><em> </em><em>to</em><em> </em><em>another </em><em>.</em>
Answer:
a. λ = 647.2 nm
b. I₀ 9.36 x 10⁻⁵
Explanation:
Given:
β = 56.0 rad , θ = 3.09 ° , γ = 0.170 mm = 0.170 x 10⁻³ m
a.
The wavelength of the radiation can be find using
β = 2 π / γ * sin θ
λ = [ 2π * γ * sin θ ] / β
λ = [ 2π * 0.107 x 10⁻³m * sin (3.09°) ] / 56.0 rad
λ = 647.14 x 10⁻⁹ m ⇒ λ = 647.2 nm
b.
The intensity of the central maximum I₀
I = I₀ (4 / β² ) * sin ( β / 2)²
I = I₀ (4 / 56.0²) * [ sin (56.0 /2) ]²
I = I₀ 9.36 x 10⁻⁵
The distance between the resting point and maximum height of the wave is 0.2 cm.
The amplitude is measured from the resting point up to the highest point of the wave.
Answer:
7) 
8) 
9) 
10) 
Explanation:
For the problems 7, 8 and 9 we just apply the definition of acceleration, since no more information is given, which is:

So for each problem we will have:
7) 
8) 
9) 
For the problem 10, we use the equation of velocity in accelerated motion:

Since the ball starts from rest and the acceleration is that of gravity (we take the downward direction positive), we have:
