1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
katrin2010 [14]
3 years ago
12

19.

Physics
2 answers:
OLEGan [10]3 years ago
8 0
I believe that it is C.
mihalych1998 [28]3 years ago
7 0

Fg is the symbol for gravitational force.

Answer: C. Fg.

You might be interested in
"A bridge, constructed of 11 beams of equal length L and negligible mass, supports an object of mass M.
fiasKO [112]
F_P  + F_Q = M g
F_P = M g - F_Q
Torque, or moment of force:
∑ M_P = 0
∑ M_P = M g L - F_Q · 3 L
0 = M g L - 3 F_Q L         / : L
0 = M g - 3 F_Q
3 F_Q = M g
F_Q = M g /3
Finally:
F_P = M g - M g/3
F_P = 4 M g / 3

7 0
3 years ago
Read 2 more answers
PART ONE
Helga [31]

Answer:

1.129×10⁻⁵ N

1.295 m

Explanation:

Take right to be positive.  Sum of forces on the 31.8 kg mass:

∑F = GM₁m / r₁² − GM₂m / r₂²

∑F = G (M₁ − M₂) m / r²

∑F = (6.672×10⁻¹¹ N kg²/m²) (516 kg − 207 kg) (31.8 kg) / (0.482 m / 2)²

∑F = 1.129×10⁻⁵ N

Repeating the same steps, but this time ∑F = 0 and we're solving for r.

∑F = GM₁m / r₁² − GM₂m / r₂²

0 = GM₁m / r₁² − GM₂m / r₂²

GM₁m / r₁² = GM₂m / r₂²

M₁ / r₁² = M₂ / r₂²

516 / r² = 207 / (0.482 − r)²

516 (0.482 − r)² = 207 r²

516 (0.232 − 0.964 r + r²) = 207 r²

119.9 − 497.4 r + 516 r² = 207 r²

119.9 − 497.4 r + 309 r² = 0

r = 0.295 or 1.315

r can't be greater than 0.482, so r = 0.295 m.

5 0
3 years ago
A mass MM uniform solid cylinder of radius RR and a mass MM thin uniform spherical shell of radius RR roll without slipping. If
vampirchik [111]

Answer:

vcyl / vsph = 1.05

Explanation:

  • The kinetic energy of a rolling object can be expressed as the sum of a translational kinetic energy plus a rotational kinetic energy.
  • The traslational part can be written as follows:

       K_{trans} = \frac{1}{2}* M* v_{cm} ^{2}  (1)

  • The rotational part can be expressed as follows:

       K_{rot} = \frac{1}{2}* I* \omega ^{2}  (2)

  • where I = moment of Inertia regarding the axis of rotation.
  • ω = angular speed of the rotating object.
  • If the object has a radius R, and it rolls without slipping, there is a fixed relationship between the linear and angular speed, as follows:

       v = \omega * R (3)

  • For a solid cylinder, I = M*R²/2 (4)
  • Replacing (3) and (4)  in (2), we get:

       K_{rot} = \frac{1}{2}* \frac{1}{2} M*R^{2} * \frac{v_{cmc} ^{2}}{R^{2}} = \frac{1}{4}* M* v_{cmc}^{2}  (5)

  • Adding (5) and (1), we get the total kinetic energy for the solid cylinder, as follows:

       K_{cyl} = \frac{1}{2}* M* v_{cmc} ^{2}  +\frac{1}{4}* M* v_{cmc}^{2}  =  \frac{3}{4}* M* v_{cmc} ^{2} (6)

  • Repeating the same steps for the spherical shell:

        I_{sph} = \frac{2}{3} * M* R^{2} (7)  

       K_{rot} = \frac{1}{2}* \frac{2}{3} M*R^{2} * \frac{v_{cms} ^{2}}{R^{2}} = \frac{1}{3}* M* v_{cms}^{2}  (8)

      K_{sph} = \frac{1}{2}* M* v_{cms} ^{2}  +\frac{1}{3}* M* v_{cms}^{2}  =  \frac{5}{6}* M* v_{cms} ^{2} (9)

  • Since we know that both masses are equal each other, we can simplify (6) and (9), cancelling both masses out.
  • And since we also know that both objects have the same kinetic energy, this means that (6) are (9) are equal each other.
  • Rearranging, and taking square roots on both sides, we get:

       \frac{v_{cmc}}{v_{cms}} =\sqrt{\frac{10}{9} } = 1.05 (10)

  • This means that the solid cylinder is 5% faster than the spherical shell, which is due to the larger moment of inertia for the shell.
3 0
3 years ago
What type of friction occurs when you are trying to move an object, but the object isnt moving?
Tasya [4]

the answer is static friction


7 0
3 years ago
This force will cause the path of the particle to curve. Therefore, at a later time, the direction of the force will ___________
melisa1 [442]

Answer:

have a component along the direction of motion that remains perpendicular to the direction of motion

Explanation:

In this exercise you are asked to enter which sentence is correct, let's start by writing Newton's second law.

circular movement

          F = m a

          a = v² / r

          F = m v²/R

where the force is perpendicular to the velocity, all the force is used to change the direction of the velocity

in linear motion

         F = m a

where the force is parallel to the acceleration of the body, the total force is used to change the modulus of the velocity

the correct answer is: have a component along the direction of motion that remains perpendicular to the direction of motion

8 0
3 years ago
Other questions:
  • If the amplitude of a sound wave is made 3.0 times greater, by what factor will the intensity increase? Express your answer usin
    10·1 answer
  • (Will give brainliest answer)
    7·2 answers
  • Which value from his calculation most strongly affects the number of significant figures in the answer?
    14·1 answer
  • In t-ball, young players use a bat to hit a stationary ball off a stand. The 140 g ball has about the same mass as a baseball, b
    10·1 answer
  • What potential difference is needed to stop an electron that has an initial velocity v=6.0
    12·1 answer
  • The big bang produced an imprint of leftover heat called _____. hydrogen cosmic heat CMB radiation redshift
    5·2 answers
  • Which of the following regions contains the primary visual cortex?
    15·1 answer
  • A. If an electron of 16 eV had a head-on collision with a Cs atom at rest, what would be the kinetic energy in eV) of the recoil
    15·1 answer
  • The fall of a body on the earth's surface cannot be a complete free fall why ?​
    15·1 answer
  • The releasing of an object from certain height to ground due to gravity is called____ A, Free falling B, Projectile C, curved li
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!