Answer:
b)15.0°C
Explanation:
Specific Heat of Water=4.2 J/g°C
This means, that 1 g of Water will take 4.2 J of energy to increase its temperature by 1°C.
∴80 g Water will take 80×4.2 J of energy to increase its temperature by 1°C.
80×4.2 J=336 J
Total Energy Provided=1680 J
The temperature increase=\frac{\textrm{Total energy required}}{\textrm{energy required to increase temperature by one degree}}
Temperature increase=
=5°C
Initial Temperature =10°C
Final Temperature=Initial + Increase in Temperature
=10+5=15°C
Answer : attention swung away from renewable sources as the industrial revolution ... turbines have developed greatly in recent decades, solar photovoltaic technology is ... However, the variability of wind and solar power does not correspond with ... and 0.17 for solar PV, hence declared net capacity (DNC) is the figure
Explanation:
Element on the right side of the periodic table differ from the elements on the left side in that elements on the <em>right side are non metallic and tends to be gases at room temperature.</em>
<em> </em><u>Explanation</u>
In the periodic table there element in the right side , left side and those which are in between.
- Example of element in the right side is fluorine chlorine, neon, Argon among others.
- This element have higher effective nuclear charges and stabilize electrons more effectively.
- there electrostatic intermolecular forces are generally weak therefore they exist in liquid or gaseous state.
Answer:
The answer to your question is: 0.028 kg of NO2
Explanation:
Data
3.7 x 10²⁰ molecules of NO2 in kg
MW of NO2 = 14 + (16 x 2) = 14 + 32 = 46 kg
1 mol of NO2 --------------------- 6.023 x 10 ²³ molecules
x --------------------- 3.7 x 10²⁰ molecules
x = 3.7 x 10²⁰ x 1 / 6.023 x 10 ²³
x = 0.00061 mol
1 mol of NO2 --------------------- 46 kg of NO2
0.00061 mol ------------------ x
x = 0.00061 x 46/1
x = 0.028 kg of NO2