Answer:
v = 15.65 m/s
Explanation:
We use conservation of mechanical energy between initial (i) and final (f) states:
Pi + KEi = Pf + KEf
At the top of the cave at the instant the bat starts to fall, there is only potential energy since the bat's velocity is zero.
Pi = m g h = 600 J
and the KEi = 0 J (no velocity)
Knowing the height of the cave's roof (12.8 m) , we can find the mass of the bat:
m = 600 J / (g 12.5) = 4.9 kg
Using conservation of mechanical energy, the final state is:
Pf + KEf = 600 J
with Pf = 0 (just touching the ground)
KEf= 1/2 4.9 (v^2)
and we solve for the velocity:
600 J = 0 + 1/2 4.9 (v^2)
v^2 = 600 * 2 / 4.9 = 244.9
v = 15.65 m/s
The correct answer to your question and how to solve it is
The relation between wavelength (λ)and the frequency of electromagnetic oscillation (f) is described by the following expression: λ=c/f, where c–is the speed of light in vacuum = 3*10^8 m/s
Derive f from above: f = c/λ.How to Calculate: λ=890nm = 890*10^-9m = 8.9*10^-7m
f =3*10^8m/s Divided by 8.9*10^-7m = 0.34*10^15 s-1=3.4*10^14 s-1
So your Answer is: The frequency of radiation of wavelength 890 nm is 3.4*10^14s-1
Answer:

Explanation:
As we know that the that the Astronaut dropped a stone on the surface of the planet takes 0.420 s to fall a distance of d = 1.90 m
so we will have



now we know that the acceleration due to gravity is given as

so we will have


Formula for net force: force= mass x acceleration
Answer:
The base unit for time is the second (the other SI units are: metre for length, kilogram for mass, ampere for electric current, kelvin for temperature, candela for luminous intensity, and mole for the amount of substance). The second can be abbreviated as s or sec.
Explanation: