The Volume of the ice block is 5376.344 cm^3.
The density of a material is define as the mass per unit volume.
Here, the density of ice given is 0.93 g/cm^3
Mass of the ice block given is 5 kg or 5000 g
Now calculate the volume of the ice block
density=mass/volume
0.93=5000/Volume
Volume =5376.344 cm^3
Therefore the volume of ice block is 5376.344 cm^3
Answer:
(a) 
(b) 
(c) K.E. = 21.168 J
(d) 
Explanation:
Given:
- mass of a block, M = 3.6 kg
- initial velocity of the block,

- constant downward acceleration,

That a constant upward acceleration of
is applied in the presence of gravity.
∴
- height through which the block falls, d = 4.2 m
(a)
Force by the cord on the block,



∴Work by the cord on the block,


We take -ve sign because the direction of force and the displacement are opposite to each other.

(b)
Force on the block due to gravity:

∵the gravity is naturally a constant and we cannot change it


∴Work by the gravity on the block,



(c)
Kinetic energy of the block will be equal to the net work done i.e. sum of the two works.
mathematically:


K.E. = 21.168 J
(d)
From the equation of motion:

putting the respective values:

is the speed when the block has fallen 4.2 meters.
The best and most correct answer among the choices provided by the question is the fourth choice.
The best people for advising is <span>the government agency that regulates these types of chemicals.</span>
I hope my answer has come to your help. God bless and have a nice day ahead!
An electric motor converts electrical energy into mechanical energy.
What is electric motor?
An electric motor is an electrical machine that converts electrical energy into mechanical energy.
A generator is mechanically identical to an electric motor, but operates with a reversed flow of power
Hence it will convert mechanical energy into electrical energy.
Some applications of electric motor are:
Industrial fans, blowers and pumps, machine tools, household appliances, power tools, vehicles, and disk drives.
Learn more about electric motor :brainly.com/question/15409160
#SPJ1
Answer:
the angular velocity of the carousel after the child has started running =

Explanation:
Given that
the mass of the child = m
The radius of the disc = R
moment of inertia I = 
change in time = 
By using the torque around the inertia ; we have:
T = I×∝
where
R×F = I × ∝
R×F =
∝
F =
∝
∝ =
( expression for angular angular acceleration)
The first equation of motion of rotating wheel can be expressed as :

where ;
∝ =
Then;


∴ the angular velocity of the carousel after the child has started running =
