Volume of a substance can be determined by dividing mass of the substance by its density.
That can be mathematical shown as:
Density=Mass/Volume
So, Volume=Mass/Density
Here mass of the substance given as 24.60 g
Whereas density of the substance is 2.70 g/mL
So,
Volume=Mass/Density
=24.6/2.7
=9.1 mL
So volume of the substance is 9.1 mL.
The heat energy breaks down the bonds between the molecules of the solid so the molecules become looser. Further hearing of the liquid causes the bonds to be broken down and the molecules will move further apart.
Answer :
The concentration of
before any titrant added to our starting material is 0.200 M.
The pH based on this
ion concentration is 0.698
Explanation :
First we have to calculate the concentration of
before any titrant is added to our starting material.
As we are given:
Concentration of HBr = 0.200 M
As we know that the HBr is a strong acid that dissociates complete to give hydrogen ion
and bromide ion
.
As, 1 M of HBr dissociates to give 1 M of 
So, 0.200 M of HBr dissociates to give 0.200 M of 
Thus, the concentration of
before any titrant added to our starting material is 0.200 M.
Now we have to calculate the pH based on this
ion concentration.
pH : It is defined as the negative logarithm of hydrogen ion concentration.
![pH=-\log [H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%20%5BH%5E%2B%5D)


Thus, the pH based on this
ion concentration is 0.698
To find this, we will use this formula:
Molar mass of element
------------------------------------ x 100
Molar mass of compound
So, first lets calculate the mass of the compound as a whole. We use the atomic masses on the periodic table to determine this.
Ca: 40.078 g/mol
N2 (there is two nitrogens): 28.014 g/mol
O6 (there are six nitrogens: 3 times 2): 95.994 g/mol
When we add all of those numbers up together, we get 164.086. That is the molar mass for the whole compound. However, we are trying to figure out what percent of the compound oxygen makes up. From the molar mass, we know that 95.994 of the 164.086 is oxygen. Lets plug those numbers into our equation!
95.994
-----------
164.086
When we divide those two numbers, we get .585. When we multiply that by 100, we get 58.5.
So, the percent compostition of oxygen in Ca(NO3)2, or, calcium nitrate, is 58.5%.
The question asks average kinetic energy. So it is only related with the temperature. The higher temperature is, the higher kinetic energy is. So the answer is (4).