<span>NASA and the Mad Science Group of Montreal, Canada, have teamed in an effort to spark the imagination of children, encouraging more youth to pursue careers in science, technology, engineering and math. The two organizations recently signed a Space Act Agreement, officially launching the development of the Academy of Future Space Explorers.</span>
Answer:
22m/s
Explanation:
To find the velocity we employ the equation of free fall: v²=u²+2gh
where u is initial velocity, g is acceleration due to gravity h is the height, v is the velocity the moment it hits the ground, taking the direction towards gravity as positive.
Substituting for the values in the question we get:
v²=2×9.8m/s²×25m
v²=490m²/s²
v=22.14m/s which can be approximated to 22m/s
Answer:
Explanation:
Given that,
Mass m = 6.64×10^-27kg
Charge q = 3.2×10^-19C
Potential difference V =2.45×10^6V
Magnetic field B =1.6T
The force in a magnetic field is given as Force = q•(V×B)
Since V and B are perpendicular i.e 90°
Force =q•V•BSin90
F=q•V•B
So we need to find the velocity
Then, K•E is equal to work done by charge I.e K•E=U
K•E =½mV²
K•E =½ ×6.64×10^-27 V²
K•E = 3.32×10^-27 V²
U = q•V
U = 3.2×10^-19 × 2.45×10^6
U =7.84×10^-13
Then, K•E = U
3.32×10^-27V² = 7.84×10^-13
V² = 7.84×10^-13 / 3.32×10^-27
V² = 2.36×10^14
V=√2.36×10^14
V = 1.537×10^7 m/s
So, applying this to force in magnetic field
F=q•V•B
F= 3.2×10^-19 × 1.537×10^7 ×1.6
F = 7.87×10^-12 N
Explanation:
Análisis estadístico de resultados de ensayos de pavimentos asfálticos según la ... T38 Caracterizacin dinámica de suelos granulares ... Se retira y se da vuelta la probeta