1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Naddik [55]
3 years ago
14

How would the interference pattern change for this experiment if a. the grating was moved twice as far from the screen and b. th

e line density of the grating were doubled?
Physics
1 answer:
Alekssandra [29.7K]3 years ago
4 0

Answer:

a) the distance between the interference fringes is reduced by half

b) the distance between stripes is doubled

Explanation:

Interference experiments constructive interference is described by the expression

          d sin θ = m λ

let's use trigonometry to find the distance between the interference fringes

              tan θ=  y / L

dodne y is the distance from the central maximum, L the distance from the slit to the observation screen. In general these experiments are carried out at very small angles

            tan θ = sin θ / cos θ = sin θ

we substitute

             sin θ = y / L

             

            d y / L = m  λ

           y = m λ / d L

a) it asks us when the screen doubles its distance

           L ’= 2 L

subtitute in the equation

           y ’= m λ / (d 2L)

           y ’=( m λ / d L) /2

           y ’= y / 2

the distance between the interference fringes is reduced by half

b) the density of the network doubles

      if the density doubles in the same distance there are twice as many slits, so the distance between them is reduced by half

            d ’= d / 2

we substitute

          y ’= m λ (L d / 2)

          y ’= m λ / (L d) 2

          y ’= y 2

the distance between stripes is doubled

You might be interested in
A girl playing tug-of-war with her dog pulls the dog a distance of 8.0m by exerting a force at an angle of 18° with the horizont
AnnZ [28]

Answer:

25 N

Explanation:

Work is a product of force and perpendicular distance moved.

W=Fd where F is force exerted and d is perpendicular distance.

However, for this case, the distance is inclined hence resolving it to perpendicular so that it be along x-axis we have distance as dcos\theta

Therefore, W=Fdcos\theta

Making F the subject of the formula then

F=\frac {W}{dcos\theta} where \theta is the angle of inclination. Substituting 190 J for W then 18 degrees for \theta and 8 m for d then

F=\frac {190}{8cos18^{\circ}}\approx 25N

3 0
3 years ago
A circuit consists of a battery connected to three resistors (65 ω, 25ω, and 170ω) in parallel. the total current through the re
White raven [17]
A. To find the total emf of the battery, just remember that in a parallel circuit, the voltage is the same throughout the circuit. So you can get the total voltage of the circuit by using Ohm's Law. 

I= \frac{V}{R}

Where:
I = current (A)
V = Voltage (V) (emf)
R = Resitance (Ω)

Now you can derive the formula of Voltage by transposing the Resistance to the other side of the equation to isolate Voltage. The formula you will now use will be:
V = IR

However, you cannot solve this yet because the resistance you need is the total resistance in the circuit. To do this, you need to get the total resistance in this parallel circuit and the formula would be:

\frac{1}{R_{T}} =  \frac{1}{R_{1}}+ \frac{1}{R_{2}}+ \frac{1}{R_{3}}...+ \frac{1}{R_{n}}

You have three resistors with the following resistance:
65Ω, 25Ω and 170Ω
\frac{1}{R_{T}} = \frac{1}{R_{1}}+ \frac{1}{R_{2}}+ \frac{1}{R_{3}}...+ \frac{1}{R_{n}}

\frac{1}{R_{T}} = \frac{1}{R_{65}}+ \frac{1}{R_{25}}+ \frac{1}{R_{170}}


\frac{1}{R_{T}} =0.0153+0.04+0.006+0.0059
\frac{1}{R_{T}} =0.0613

Get the reciprocal of both sides and divide:

R_{T} =  \frac{1}{0.0613} =16.32

The total resistance then is 16.32Ω

Now that you have the total resistance, you can solve for the total voltage:
V = IR
V = (1.8)(16.32)
V = 29.376V

The emf of the battery is 29.376V


B. To find the resistance in each resistor, just apply Ohm's law again. In a parallel circuit, the voltage is the same, but the current that runs through it is different for each resistor. Now just solve for the current of each using the same voltage.

Resistor 1: 65Ω
I= \frac{V}{R}
I= \frac{29.376}{65}
I= 0.45A

The current flowing through resistor 1 with a resistance of 65Ω is 0.45A.

Resistor 2: 25Ω
I= \frac{V}{R}
I= \frac{29.376}{25}
I= 1.18A
The current flowing through resistor 2 with a resistance of 25Ω is 1.18A.

Resistor 3: 170Ω
I= \frac{V}{R}
I= \frac{29.376}{170}
I= 0.17A

The current flowing through resistor 3 with a resistance of 170Ω is 0.17A.

If you add up all their current it confirms the given that the total current running through all of them is 1.8A.
4 0
3 years ago
A spaceship hovering over the surface of Venus drops an object from a height of 17 m. How much longer does it take to reach the
Paraphin [41]

1.96s and 1.86s. The time it takes to a spaceship hovering the surface of Venus to drop an object from a height of 17m is 1.96s, and the time it takes to the same spaceship hovering the surface of the Earth to drop and object from the same height is 1.86s.

In order to solve this problem, we are going to use the motion equation to calculate the time of flight of an object on Venus surface and the Earth. There is an equation of motion  that relates the height as follow:

h=v_{0} t+\frac{gt^{2}}{2}

The initial velocity of the object before the dropping is 0, so we can reduce the equation to:

h=\frac{gt^{2}}{2}

We know the height h of the spaceship hovering, and the gravity of Venus is g=8.87\frac{m}{s^{2}}. Substituting this values in the equation h=\frac{gt^{2}}{2}:

17m=\frac{8.87\frac{m}{s^{2} } t^{2}}{2}

To calculate the time it takes to an object to reach the surface of Venus dropped by a spaceship hovering from a height of 17m, we have to clear t from the equation above, resulting:

t=\sqrt{\frac{2(17m)}{8.87\frac{m}{s^{2} } }} =\sqrt{\frac{34m}{8.87\frac{m}{s^{2} } } }=1.96s

Similarly, to calculate the time it takes to an object to reach the surface of the Earth dropped by a spaceship hovering from a height of 17m, and the gravity of the Earth g=9.81\frac{m}{s^{2}}.

t=\sqrt{\frac{2(17m)}{9.81\frac{m}{s^{2} } }} =\sqrt{\frac{34m}{9.81\frac{m}{s^{2} } } }=1.86s

8 0
3 years ago
Read 2 more answers
How can isotopes of a given element be identified?​
marin [14]

Answer: All isotopes of a given element have the same number of protons but different numbers of neutrons in each atom. ... Each atomic number identifies a specific element, but not the isotope; an atom of a given element may have a wide range in its number of neutrons.

Explanation: Hopefully this helps. Have a great day.

6 0
3 years ago
HELPPPPPPPPPPPPPPPPPPP
Makovka662 [10]
1- You help others learn and train them ,2- it affects ur body in a good way which can help you when ur older ,3- if your at any near beach / pool and Somome is drowning u get them ,4- u can become a mermaid and get paid
7 0
3 years ago
Read 2 more answers
Other questions:
  • What is the primary outgoing radiation put off by the sun?
    12·1 answer
  • What is the bone in your arm
    14·2 answers
  • solar panels convert light energy from sunlight into electricity energy what material is most likely used in solar panels and wh
    14·2 answers
  • The picture above shows 3 sets of balloons, all with a particular charge. Which of the picture(s) is true? Explain. Then explain
    5·2 answers
  • In a 350-m race, runner A starts from rest and accelerates at 1.6 m/s^2 for the first 30 m and then runs at constant speed. Runn
    9·1 answer
  • How are energy and distance up the ramp related
    15·1 answer
  • <img src="https://tex.z-dn.net/?f=what%20%5C%3A%20is%20%5C%3A%20refraction%20%5C%3A%20of%20%5C%3A%20light%20%5C%3A%20%20%7B%3F%7
    15·2 answers
  • Determine the object of pendulum of length 90m at sea level if gravity is 10m/s​
    6·1 answer
  • If the distance between two charged particles is increased 2.69 times, the ratio of new to old electric force is _______ times t
    12·1 answer
  • The watermark can be of different types depending on the application. A watermark will resist manipulations of the media. Howeve
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!