False
Fact: Mammals and plants belong to the same domain, the Eukarya domain.
Evidence :All the organisms that possess a eukaryotic cell, plants, animals, protists, and fungi are in the Eukarya domain.
Answer:
Percent Yield = 94.237%
Explanation:
CO = Carbon Dioxide = Molar Mass 28g/mol
C = Carbon = 12g/mol
O = Oxygen = 16g/mol
Theoretical yield = 93.7 grams
Actual yield = 88.3 grams
Percent yield =
(actual yield
/theoretical yield
)x100
Percent Yield = (88.3/93.7)x100
Percent Yield = 94.237%
C. Aluminum (Al) oxidized, zinc (Zn) reduced
<h3>Further explanation</h3>
Given
Metals that undergo oxidation and reduction
Required
A galvanic cell
Solution
The condition for voltaic cells is that they can react spontaneously, indicated by a positive cell potential.

or:
E ° cell = E ° reduction-E ° oxidation
For the reaction to occur spontaneously (so that it E cell is positive), the E° anode must be less than the E°cathode
If we look at the voltaic series:
<em>Li-K-Ba-Ca-Na-Mg-Al-Mn- (H2O) -Zn-Cr-Fe-Cd-Co-Ni-Sn-Pb- (H) -Cu-Hg-Ag-Pt-Au </em>
The standard potential value(E°) from left to right in the voltaic series will be greater, so that the metal undergoing an oxidation reaction (acting as an anode) must be located to the left of the reduced metal (as a cathode)
<em />
From the available answer choices, oxidized Al (anode) and reduced Zn (cathode) are voltaic/galvanic cells.
Answer:- HBr is limiting reactant.
Solution:- The given balanced equation is:

From this equation, There is 2:6 mol or 1:3 mol ratio between Al and HBr. Since we have 8 moles of each, HBr is the limiting reactant as we need 3 moles of HBr for each mol of Al.
The calculations could be shown as:

= 24 mol HBr
From calculations, 24 moles of HBr are required to react completely with 8 moles of Al but only 8 moles of it are available. It clearly indicates, HBr is limiting reactant.