Explanation:
2 H2O 2 → 2H 2 O + O2.........
Answer:
349.22°C
Explanation:
Let the final temperature of the two pieces of metal be x.
Now, the warmer metal which is C u reduces from 475°C to x. Thus Δt for C u is; Δt1 = 475 - x.
The cooler metal Cr increases in temperature from 265°C to x. Thus, it's change in temperature is Δt for Cr is; Δt2 = x - 265.
Now from conservation of energy, the amount of energy leaving the C u metal is equal to the amount of energy entering the Cr metal.
Thus;
q_lost = q_gain
Where;
q_lost = m1•c1•Δt1
q_gained = m2•c2•Δt2
Now, c1 & c2 are the specific heat capacity of C u and Cr respectively.
From online tables, c1 = 0.385 J/g°C and c2 = 0.46 J/g°C
We are given;
m1 = 12g and m2 = 15g
Thus;
12 × 0.385 × (475 - x) = 15 × 0.46 × (x - 265)
2194.5 - 4.62x = 6.9x - 1828.5
6.9x + 4.62x = 2194.5 + 1828.5
11.52x = 4023
x = 4023/11.52
x = 349.22°C
Answer:
Postulate: Gas particles are extremely small and are far apart.
The activities can be used to demonstrate the postulate is :
<u>Observing colored gas spreading into an inverted jar placed on top of a jar containing the gas</u>
<u />
Explanation:
colored gas spreading into an inverted jar placed on top of a jar containing the gas:
This occur because of two reasons:
1. <em><u>The Gaseous particles are largely spaced . There is large distance between the gases molecule</u></em>
<em><u>2. The gases are in continuous motion . Hence they posses very high kinetic energy . This is the reason they mixes quickly if placed in a jar.</u></em>
<em><u>This occur by the process of diffusion. </u></em>
Diffusion of Gases: The intermixing of particles from the region of high concentration to low concentration.
The coloured gas goes into the space between the gaseous molecule present in the jar.(Gases are far apart)
As soon as the coloured gas is mixed in the jar , It spread quickly by diffusion because , The gaseous particles are extremely small and are far apart.
Answer:
1. 8.7moles of H2
2. 2.25moles of O2
Explanation:
1. 2NH3 —> N2 + 3H2
From the equation,
2moles of NH3 produce 3 moles of H2.
Therefore, 5.8moles of NH3 will produce Xmol of H2 i.e
Xmol of H2 = (5.8x3)/2 = 8.7moles
2. C3H8 + 5O2 —> 3CO2 + 4H2O
From the equation,
5moles of O2 produced 4moles of H2O.
Therefore, Xmol of O2 will produce 1.8mol of H2O i.e
Xmol of O2 = (5x1.8)/4 = 2.25moles
The hydrogen bonds that form between water molecules account for some of the essential and unique properties of water. The attraction created by hydrogen bonds keepswater liquid over a wider range of temperature than is found for any other molecule its size.
Hope this helped!