Answer:
5×10⁵ L of ammonia (NH3)
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
N2 + 3H2 —> 2NH3
From the balanced equation above, we can say that:
3 L of H2 reacted to produce 2 L of NH3.
Finally, we shall determine the volume of ammonia (NH3) produced by the reaction of 7.5×10⁵ L of H2. This can be obtained as illustrated below:
From the balanced equation above,
3 L of H2 reacted to produce 2 L of NH3.
Therefore, 7.5×10⁵ L of H2 will react to produce = (7.5×10⁵ × 2)/3 = 5×10⁵ L of NH3.
Thus, 5×10⁵ L of ammonia (NH3) is produced from the reaction.
Of all the substances used, water possesses the strongest intermolecular forces (hydrogen bonds). Although hydrogen bonds exist in glycerin and methylated spirits as well, they are a little weaker than in water.
Intermolecular forces in ch3oh include London dispersion forces, dipole dipole attraction, and hydrogen bonding. Methylated spirits, a common industrial solvent, are mostly made of ethyl alcohol. Because methanol denatures ethyl alcohol, commercial supply is exempt from the typical taxes and charges imposed on alcohol. A quantity of methyl alcohol or phenol is added to make it so that drinking it will make you go blind. Alcohols have the hydrogen bonding and van der Waals intermolecular forces of attraction.
Learn more about hydrogen bonding here-
brainly.com/question/10904296
#SPJ9
Answer:
91%
Explanation:
Since you are just trying to find the yield, take the moles of the substance from the products and divide it by the mol value of the reactants. Multiply by 100 to find percentage
0.45 ÷ 0.41 = 0.91111...
91%
Answer:
2.67 × 10⁻²
Explanation:
Equation for the reaction is expressed as:
CaCrO₄(s) ⇄ Ca₂⁺(aq) + CrO₂⁻⁴(aq)
Given that:
Kc=7.1×10⁻⁴
Kc= ![[Ca^{2+}][CrO^{2-}_4]](https://tex.z-dn.net/?f=%5BCa%5E%7B2%2B%7D%5D%5BCrO%5E%7B2-%7D_4%5D)
Kc= [x][x]
Kc= [x²]
7.1×10⁻⁴ = [x²]
x = 
x = 0.0267
x = 