Answer:


Explanation:
first write the equilibrium equaion ,
⇄ 
assuming degree of dissociation
=1/10;
and initial concentraion of
=c;
At equlibrium ;
concentration of
![[C_3H_5O_3^{-} ]= c\alpha](https://tex.z-dn.net/?f=%5BC_3H_5O_3%5E%7B-%7D%20%20%5D%3D%20c%5Calpha)
![[H^{+}] = c\alpha](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%20%3D%20c%5Calpha)

is very small so
can be neglected
and equation is;

= 
![P_H =- log[H^{+} ]](https://tex.z-dn.net/?f=P_H%20%3D-%20log%5BH%5E%7B%2B%7D%20%5D)





composiion ;
![c=\frac{1}{\alpha} \times [H^{+}]](https://tex.z-dn.net/?f=c%3D%5Cfrac%7B1%7D%7B%5Calpha%7D%20%5Ctimes%20%5BH%5E%7B%2B%7D%5D)
![[H^{+}] =antilog(-P_H)](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%20%3Dantilog%28-P_H%29)
![[H^{+} ] =0.0014](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%20%5D%20%3D0.0014)


Answer:
<h3>The answer is 2 g/cm³</h3>
Explanation:
The density of a substance can be found by using the formula

From the question
mass = 48 g
volume = 24 cm³
We have

We have the final answer as
<h3>2 g/cm³</h3>
Hope this helps you
<span>So to make it clear let's break the equation down species by species and assess the number of each species on bothe sides of the equation:
2C</span>₈H₈ + 25O₂ → 8CO₂ + 18H₂<span>O
LHS: C - 16 RHS: C - 8
H - 16 H - 36
O - 50 O - 34
Thus based on that it is evident that the equation is not quite balanced. This therefore means a "</span><span>No, because the number of carbon, hydrogen & oxygen atoms on both sides of the equation are not equal."
</span>The actual balance equation would be C₈H₈ + 10O₂ → 8CO₂ + 4H₂O