When the sound wave returns to the machine, you can measure
how long it took to return.
(You may notice that it's working just like RADAR, which does the
same thing with radio waves instead of sound waves.)
Even if you know how long the sound took to get to the bottom and
return to the top, you can't DO anything with this information if you
don't know the SPEED of the sound through the water. Not only
the inventory of this machine, but anyone who uses it, has to know
the speed of the sound through water in order to use the round-trip
time to calculate the depth.
Evidence from fossils, glaciers, and complementary coastlines helps reveal how the plates once fit together. Fossils tell us when and where plants and animals once existed. Some life "rode" on diverging plates, became isolated, and evolved into new species.
Answer:
the answer is C
Explanation:
gravity forces down not up or sideways.
Answer:
This does not violate the conservation of energy.
Explanation:
This does not violate the conservation of energy because the hot body gives energy in the form of heat to the colder body, this second absorbs energy. This will be the case until both bodies reach the same temperature, reaching thermal equilibrium and reducing the transfer of thermal energy. In this way the energy was only transferred from one body to another but the total energy of the system (body 1 plus body 2) will be the same as in the beginning, respecting the principle of conservation of energy or also called the first principle of thermodynamics .
The part of physics that studies these processes is in turn called heat transfer or heat transfer or thermal transfer. Heat transfer occurs whenever there is a thermal gradient or when two systems with different temperatures come into contact. The process persists until thermal equilibrium is reached, that is, until temperatures are equalized. When there is a temperature difference between two objects or regions close enough, the heat transfer cannot be stopped, it can only be slowed down.