Under the assumption that the tires do not change in volume, apply Gay-Lussac's law:
P/T = const.
P = pressure, T = temperature, the quotient of P/T must stay constant.
Initial P and T values:
P = 210kPa + 101.325kPa
P = 311.325kPa (add 101.325 to change gauge pressure to absolute pressure)
T = 25°C = 298.15K
Final P and T values:
P = ?, T = 0°C = 273.15K
Set the initial and final P/T values equal to each other and solve for the final P:
311.325/298.15 = P/273.15
P = 285.220kPa
Subtract 101.325kPa to find the final gauge pressure:
285.220kPa - 101.325kPa = 183.895271kPa
The final gauge pressure is 184kPa or 26.7psi.
D, I hope this is correct!
Answer:
Average force will be equal to 2908.57 N
Explanation:
We have given mass of the ball m = 46 gram = 0.046 kg
Let velocity at which ball is projected is u m/sec
Angle at which ball is projected 
Range of the ball is given R = 200 m
Range is equal to 


u = 44.27 m/sec
Change in momentum of the ball is equal to 
Time of impact is given 
Force is equal to rate of change of momentum
So force 
Force will be equal to 2908.57 N
Definitely not me!!!! (unless it's magnetism or circuits)
The velocity of the object. because the greater the movement in particles the greater would be the kinetic energy.