Answer:
L = 0.635m
Explanation:
This problem involves the concept of stationary waves in pipes. For pipes closed at one end,
The frequency f = nv/4L for n = 1,3,5....n
For pipes open at both ends
f = nv/2L for n = 1,2,3,4...n
Assuming the pipe is closed at one end and that velocity of sound is 343m/s in air. If we are right we will obtain a whole number for n.
The film solution can be found in the attachment below.
Answer:
For further investigation see also the most recent World Population Data ... and Latin America and the Caribbean, and the regions of Melanesia, ... While Germany's death rate exceeds its birth rate, its population ... Population growth accelerated.
Answer:
the aluminum would have the most mass
Answer:
t = 13.43 s
Explanation:
In order to find the minimum time required by the plane to stop, we will use the first equation of motion. The first equation of motion is written as follows:
Vf = Vi + at
where,
Vf = Final Velocity of the Plane = 0 m/s (Since, the plane finally stops)
Vi = Initial Velocity of the Plane = 95 m/s
a = deceleration of the plane = - 7.07 m/s²
t = minimum time interval needed to stop the plane = ?
Therefore,
0 m/s = 95 m/s + (- 7.07 m/s²)t
t = (95 m/s)/(7.07 m/s²)
<u>t = 13.43 s</u>