Answer:

Explanation:
Group 4A contains a total of 4 electrons for each atom in their valence shell. Filling the orbital diagram, let's say, for carbon, notice that when we start with period 2, we have two elements in the s-block, that is, lithium and beryllium. They correspond to the two s electrons that belong to the valence shell of carbon.
Moving on, we have boron and carbon, the remaining 2 electrons. Now, starting with boron, we're in the p-block.
That said, looking at the second period, the electron configuration for the valence shell of a group 4A element would be:

Ionization energy generally decreases down a group because as one moves down a group, the outermost electron moves <u>further away </u>from the nucleus and it takes <u>less</u> energy to remove it.
Ionization energy, also known as ionization energy, would be the minimal amount of energy needed to free an isolated gaseous atom's or molecule's least loosely bonded electron.
First ionization energy often drops as you advance down a group on the periodic table. This occurs even though the outermost electron would be typically held less securely and can be removed with less energy since it travels farther away from the nucleus.
Therefore, Ionization energy generally decreases down a group because as one moves down a group, the outermost electron moves <u>further away </u>from the nucleus and it takes <u>less</u> energy to remove it.
To know more about Ionization energy
brainly.com/question/16243729
#SPJ4
B- Carbon nitrogen and oxygen. All organisms are made up of carbon, oxygen is essential to breath, and nitrogen makes up most of earth's atmosphere.