<span>Jet streams are the major means of transport for weather systems. A jet stream is an area of strong winds ranging from 120-250 mph that can be thousands of miles long, a couple of hundred miles across and a few miles deep. Jet streams usually sit at the boundary between the troposphere and the stratosphere at a level called the tropopause. This means most jet streams are about 6-9 miles off the ground. Figure A is a cross section of a jet stream.
</span>
The dynamics of jet streams are actually quite complicated, so this is a very simplified version of what creates jets. The basic idea that drives jet formation is this: a strong horizontal temperature contrast, like the one between the North Pole and the equator, causes a dramatic increase in horizontal wind speed with height. Therefore, a jet stream forms directly over the center of the strongest area of horizontal temperature difference, or the front. As a general rule, a strong front has a jet stream directly above it that is parallel to it. Figure B shows that jet streams are positioned just below the tropopause (the red lines) and above the fronts, in this case, the boundaries between two circulation cells carrying air of different temperatures.
Answer:
The method of hurrying up a reaction by decreasing its activation energy is called as catalysis, and the circumstance that's added to reduce the activation energy is termed as the catalyst.
Explanation:
Organic catalysts are named as enzymes. Enzymes are protein particles in cells which act as catalysts. Enzymes are proteid particles in groups which act as catalysts. Enzymes rush up biochemical effects in the thing but do not become used up in the method. Nearly all biochemical effects in living things require enzymes. Among an enzyme, biochemical effects go extremely quicker than they would without the enzyme.
Lava
snansnsans
a
anajansnanana
I believe you would just put a 2 in front of NH3 and keep the other ones as 1
Answer:
Photosynthesis is the process in which light energy is converted to chemical energy in the form of sugars. In a process driven by light energy, glucose molecules (or other sugars) are constructed from water and carbon dioxide, and oxygen is released as a byproduct.
Explanation: