A concave lens is a lens that has at least one of its surfaces or both surfaces curved inwards. Due to this reason, this lens diverges the light that falls on it and hence is also called a diverging lens. The concave lens is thinner in the middle compared to its edges. These are used in flashlights, binoculars, telescopes, etc.
Please see attached image for reference.
Distance = 2AU / tan1.0
If you mean 1.0 is in degrees, then Distance = 114.58 AU
To find the ratio of planetary speeds Va/Vb we need the orbital velocity formula:
V=√({G*M}/R), where G is the gravitational constant, M is the mass of the distant star and R is the distance of the planet from the star it is orbiting.
So Va/Vb=[√( {G*M}/Ra) ] / [√( {G*M}/Rb) ], in our case Ra = 7.8*Rb
Va/Vb=[ √( {G*M}/{7.8*Rb} ) ] / [√( {G*M}/Rb )], we put everything under one square root by the rule: (√a) / (√b) = √(a/b)
Va/Vb=√ [ { (G*M)/(7.8*Rb) } / { (G*M)/(Rb) } ], when we cancel out G, M and Rb we get:
Va/Vb=√(1/7.8)/(1/1)=√(1/7.8)=0.358 so the ratio of Va/Vb = 0.358.
A thermogram<span> enables the human eye to "see" light in the infrared range of the electromagnetic spectrum.</span>
The best answer is D.
Stress is a force that acts on rock to change its shape or volume. Because stress is a force, it adds energy to the rock, which is stored in the rock until either the rock breaks or changes shape.
There are three kinds of stress, namely shearing, tension and compression.
Shearing- force that pushes a mass of rock in two opposite directions and can cause rock to break and slip apart or change shape.
Tension - force that pulls on the crust, stretching rock so that it becomes thinner in the middle.
Compression - force that squeezes rock until it folds or breaks