1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
storchak [24]
3 years ago
12

An adiabatic nozzle has an inlet area of 1 m^2 and an outlet area of 0.25 m^2. Water enters the nozzle at a rate of 5 m^3/s and

a pressure of 150 kPa. What is the velocity at the exit? What is the pressure?
Physics
1 answer:
svlad2 [7]3 years ago
7 0

Answer:

v=20m/S

p=-37.5kPa

Explanation:

Hello! This exercise should be resolved in the next two steps

1. Using the continuity equation that indicates that the flow entering the nozzle must be the same as the output, remember that the flow equation consists in multiplying the area by the speed

Q=VA

for he exitt

Q=flow=5m^3/s

A=area=0.25m^2

V=Speed

solving for V

V=\frac{Q}{A} \\V=\frac{5}{0.25} =20m/s

velocity at the exit=20m/s

for entry

V=\frac{5}{1} =5m/s

2.

To find the pressure we use the Bernoulli equation that states that the flow energy is conserved.

\frac{P1}{\alpha } +\frac{v1^2}{2g} =\frac{P2} {\alpha } +\frac{v2^2}{2g}

where

P=presure

α=9.810KN/m^3 specific weight for water

V=speed

g=gravity

solving for P1

(\frac{p1}{\alpha } +\frac{V1^2-V2^2}{2g})\alpha  =p2\\(\frac{150}{9.81 } +\frac{5^2-20^2}{2(9.81)})9.81  =p2\\P2=-37.5kPa

the pressure at exit is -37.5kPa

You might be interested in
A coaxial cable has a charged inner conductor (with charge +8.5 µC and radius 1.304 mm) and a surrounding oppositely charged con
Tcecarenko [31]

Complete question:

A 50 m length of coaxial cable has a charged inner conductor (with charge +8.5 µC and radius 1.304 mm) and a surrounding oppositely charged conductor (with charge −8.5 µC and radius 9.249 mm).

Required:

What is the magnitude of the electric field halfway between the two cylindrical conductors? The Coulomb constant is 8.98755 × 10^9 N.m^2 . Assume the region between the conductors is air, and neglect end effects. Answer in units of V/m.

Answer:

The magnitude of the electric field halfway between the two cylindrical conductors is 5.793 x 10⁵ V/m

Explanation:

Given;

charge of the coaxial capable, Q = 8.5 µC = 8.5  x 10⁻⁶ C

length of the conductor, L = 50 m

inner radius, r₁ = 1.304 mm

outer radius, r₂ = 9.249 mm

The magnitude of the electric field halfway between the two cylindrical conductors is given by;

E = \frac{\lambda}{2\pi \epsilon_o r} = \frac{Q}{2\pi \epsilon_o r L}

Where;

λ is linear charge density or charge per unit length

r is the distance halfway between the two cylindrical conductors

r = r_1 + \frac{1}{2}(r_2-r_1) \\\\r = 1.304 \ mm \ + \  \frac{1}{2}(9.249 \ mm-1.304 \ mm)\\\\r = 1.304 \ mm \ + \ 3.9725 \ mm\\\\r = 5.2765 \ mm

The magnitude of the electric field is now given as;

E = \frac{8.5*10^{-6}}{2\pi(8.85*10^{-12})(5.2765*10^{-3})(50)} \\\\E = 5.793*10^5 \ V/m

Therefore, the magnitude of the electric field halfway between the two cylindrical conductors is 5.793 x 10⁵ V/m

5 0
3 years ago
2) How much work is required to pull a sled 15<br> meters if you use 30N of force?
geniusboy [140]

2 people

Explanation:

7 0
3 years ago
20 points and brainiest
DIA [1.3K]

Answer:

electrical energy sometimes.

Explanation:

125.0m

300 degree Fahrenheit

7 0
3 years ago
Describe the friction of smooth surfaces
cluponka [151]

When two surfaces slide against each other, a force called friction makes them stick very slightly together. Smooth surfaces, like ice and glass, are easy to slide over. They create very little friction. Rough surfaces like rock and sand create much more friction, and are easy to grip on to.

hope it helps...!!!

7 0
2 years ago
A piano string having a mass per unit length equal to 4.70 10-3 kg/m is under a tension of 1 400 N. Find the speed with which a
sweet [91]

Answer:

The speed of the sound wave on the string is 545.78 m/s.

Explanation:

Given;

mass per unit length of the string, μ = 4.7 x 10⁻³ kg/m

tension of the string, T = 1400 N

The speed of the sound wave on the string is given by;

v = \sqrt{\frac{T}{\mu} }

where;

v is the speed of the sound wave on the string

Substitute the given values and solve for speed,v,

v = \sqrt{\frac{T}{\mu} }\\\\v = \sqrt{\frac{1400}{4.7*10^{-3}} }\\\\v = \sqrt{297872.34}\\\\v = 545.78 \ m/s

Therefore, the speed of the sound wave on the string is 545.78 m/s.

3 0
2 years ago
Other questions:
  • A car traveled at an average speed of 65 mph for 10 hrs how fer did it travel
    14·2 answers
  • Eclipse of the sun occurs(A).When the moon is between the sun and the earth.(B).
    12·1 answer
  • In fission reactions, how must the binding energy per nucleon vary? a. The binding energy per nucleon remains constant as atomic
    10·2 answers
  • A man pulls a sled at a constant velocity across a horizontal snow surface. if a force of 80 n is being applied to the sled rope
    6·2 answers
  • A 1 170.0 kg car traveling initially with a speed of 25.000 m/s in an easterly direction crashes into the back of a 9 800.0 kg t
    9·1 answer
  • Two cars collide in a parking lot. Before the collision, their total momentum was 1800 kg m/s to the east. What is their total m
    8·1 answer
  • How do you calculate the speed of a wave?
    14·2 answers
  • Because she had serious traffic accident on Friday the 13th of last month, Felicia is conceived that all Friday the 13th will br
    14·1 answer
  • Atomos neutros de um certo elemento representativo M apresentam dois elétrons em sua camada de valência. As fórmulas corretas pa
    11·1 answer
  • Where do you weight more on top of Mt. Everest (Highest Mt. in the world) or at the beach
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!