Answer:
<em>it's</em> <em>quickly moved</em>
Explanation:
<em>whisk
</em>
<em>/(h)wisk/
</em>
<em>Learn to pronounce
</em>
<em>verb
</em>
<em>past tense: whisked; past participle: whisked
</em>
<em />
<em>take or move (someone or something) in a particular direction suddenly and quickly.</em>
<em />
<em>Hope this helps ^^</em>
Answer:
51 J
Explanation:
The air inside a bicycle tire pump has 27 joules of heat conducted away. By convention, when heat is released, it takes the negative sign, so Q = -27 J.
77.9 joules of work done are being done on the air inside a bicycle tire pump. By convention, when work is being done on the system, it takes the positive sign, so W = 77.9 J
We can calculate the change in the internal energy (ΔU) using the following expression.
ΔU = Q + W
ΔU = (-27 J) + 77.9 J
ΔU = 51 J
1 mole ----------- 22.4 L ( at STP )
3.5 mols --------- ?
V = 3.5 x 22.4 / 1
V = 78.4 L
hope this helps!
Answer:
0.677 moles
Explanation:
Take the atomic mass of K = 39.1, O =16.0, P = 31.0
no. of moles = mass / molar mass
no. of moles of K3PO4 used = 4.79 / (39.1x3 + 31 + 16x4)
= 0.02256 mol
From the equation, the mole ratio of KOH : K3PO4 = 3 :1,
meaning every 3 moles of KOH used, produces 1 mole of K3PO4.
So, using this ratio, let the no. of moles of KOH required to be y.

y = 0.02256 x3
y = 0.0677 mol
If you don't find exactly 0.677 moles as one of the options, go for the closest one. A very slight error may occur because of taking different significant figures of atomic masses when calculating.
Answer:
MgCO₃
Explanation:
From the question given above, we obtained:
MgF₂ + Li₂CO₃ —> __ + 2LiF
The missing part of the equation can be obtained by writing the ionic equation for the reaction between MgF₂ and Li₂CO₃. This is illustrated below:
MgF₂ (aq) —> Mg²⁺ + 2F¯
Li₂CO₃ (aq) —> 2Li⁺ + CO₃²¯
MgF₂ + Li₂CO₃ —>
Mg²⁺ + 2F¯ + 2Li⁺ + CO₃²¯ —> Mg²⁺CO₃²¯ + 2Li⁺F¯
MgF₂ + Li₂CO₃ —> MgCO₃ + 2LiF
Now, we share compare the above equation with the one given in the question above to obtain the missing part. This is illustrated below:
MgF₂ + Li₂CO₃ —> __ + 2LiF
MgF₂ + Li₂CO₃ —> MgCO₃ + 2LiF
Therefore, the missing part of the equation is MgCO₃