In this case, according to the given information about the oxidation numbers anf the compounds given, it turns out possible to figure out the oxidation number of manganese in both MnI2, manganese (II) iodide and MnO2, manganese (IV) oxide, by using the concept of charge balance.
Thus, we can define the oxidation state of iodine and oxygen as -1 and -2, respectively, since the former needs one electron to complete the octet and the latter, two of them.
Next, we can write the following
, since manganese has five oxidation states, and it is necessary to calculate the appropriate ones:

Next, we multiply each anion's oxidation number by the subscript, to obtain the following:

Thus, the correct choice is Manganese has an oxidation number of +2 in Mnl2 and +4 in MnO2.
Learn more:
Answer:
The Tyndall effect is the scattering of light as a light beam passes through a colloid. The individual suspension particles scatter and reflect light, making the beam visible. The amount of scattering depends on the frequency of the light and density of the particles
Explanation:
And an activity to see if the solution doesn't show the tyndall effect is to try to shine a flaslight through it and see if you can see it coming out the other end
Answer:
10.5!!!!!!!!!!!!!!!!!!!!!!
C. Beryllium. Which has 112 pm
Answer: Answer:- C. The container contains 8 grams of liquid water and no ice.
Explanation: