1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lina20 [59]
3 years ago
12

nitially, scientists described atoms as the smallest particles of matter. However, smaller particles within atoms were discovere

d. How did the scientific world respond to this new information?
Physics
1 answer:
Kisachek [45]3 years ago
7 0
<h2>Answer</h2>

They get involved in this new information

<h2>Expalantion</h2>

In the ancient time, the scientists believed that there is the smallest particle which can control the nature of reaction in the environment which they called them. Then a lot of experiment was conducted in which new coming scientists discovered the protons, electrons, neutrons, and other smallest particles. Firstly, scientists performed experiments for this new discoveries to know better about them and then include them in their next experiment for better exposures.

You might be interested in
How is velocity different from speed? Velocity is based on distance. Velocity includes direction. Velocity can be an average or
Kruka [31]
Velocity includes direction, for instance going 140 MPH is speed but going 140 MPH North is velocity
5 0
3 years ago
Read 2 more answers
An astronomy class is so excited by the discovery of planets around other stars that they decide to do a library exhibit on the
valina [46]

Answer:

Christian Doppler

Explanation:

The Scientist with the most significant contribution to the discovery of planets around other stars is Christian Doppler and his work that made this discovery possible is the Principle of  DOPPLER EFFECT

<em>Christian Doppler was an Austrian scientist and physicist whose principle Doppler effect explained how observed frequency of light and sound waves are affected by a relative motion of both the source and detector </em>

7 0
3 years ago
Calculate the net force on the right charge due to the other two. Enter a positive value if the force is directed to the right a
lbvjy [14]

Answer:

Answer:

A. - 0.017N. It acts to the left.

B. - 0.043N. It acts to the left.

C. 0.060N. It acts to the right.

Explanation:

A. For the +65μC charge, we consider it to be the origin. Hence, the two other charges are on the +x axis.

The net coulombs force on the charge is

F = [KQ(1)Q(2)]/(r^2) + [KQ(1)Q(3)]/(r^2)

Where K = Coloumbs constant =

Q(1) = charge on the leftmost side.

Q(2) = charge in the middle.

Q(3) = charge on the rightmost side.

F = [(8.988 × 10^9)×(65×10^-6)×(48×10^-6)]/(40^2) + [(8.988 × 10^9)×(-95×10^-6)×(65×10^-6)]/(40^2)

F = 0.01753 - 0.03469

F = -0.017N

It has a negative sign, hence, it acts to the left.

B. For the +48μC charge, we consider it to be the origin. Hence, the leftmost charge is on the - x axis and the rightmost charge is on the +x axis.

The net coulombs force on the charge is

F = [-KQ(1)Q(3)]/(r^2) + [KQ(2)Q(3)]/(r^2)

F = [-(8.988×10^9)×(65×10^-6)×(48×10^-6)]/(40^2) + [(8.988 × 10^9)×(48×10^-6)×(-95×10^-6)]/(40^2)

F = -0.017 - 0.02562

F = - 0.043N

It has a negative sign, hence, it acts to the left.

C. For the -95μC charge, we consider it to be the origin. Hence, the two other charges are on the - x axis.

The net coulombs force on the charge is

F = [-KQ(1)Q(3)]/(r^2) - [KQ(2)Q(3)]/(r^2)

F = [-(8.988×10^9)×(65×10^-6)×(-95×10^-6)]/(40^2) - [(8.988 × 10^9)×(48×10^-6)×(-95×10^-6)]/(40^2)

F = +0.03469 + 0.02562

F = +0.060N

It has a positive sign, hence, it acts to the right.

Read more on Brainly.com - brainly.com/question/14592748#readmore

Explanation:

5 0
3 years ago
If p(a)=0.07692, p(b)=0.25, and probability of a and b. =0.01923, what is probability of a or b. to four decimal places? select
Triss [41]

Answer:

p(a) * p(b) = .01923

p(b) = .01923 / .07692 = .2500

5 0
2 years ago
A stationary police car emits a sound of frequency 1240 HzHz that bounces off of a car on the highway and returns with a frequen
Tju [1.3M]

Answer

given,

frequency from Police car= 1240 Hz

frequency of sound after return  = 1275 Hz

Calculating the speed of the car = ?

Using Doppler's effect formula

Frequency received by the other car

  f_1 = \dfrac{f_0(u + v)}{u}..........(1)

u is the speed of sound = 340 m/s

v is the speed of the car

Frequency of the police car received

  f_2= \dfrac{f_1(u)}{u-v}

now, inserting the value of equation (1)

  f_2= f_0\dfrac{u+v}{u-v}

  1275=1240\times \dfrac{340+v}{340-v}

  1.02822(340 - v) = 340 + v

   2.02822 v = 340 x 0.028822

   2.02822 v = 9.799

   v = 4.83 m/s

hence, the speed of the car is equal to v = 4.83 m/s

5 0
3 years ago
Other questions:
  • In which of the following situations has work been done? Select one: a. A weightlifter holds a 50kg barbell over his head for 3
    13·1 answer
  • What is the charge of a newly formed oxygen ion
    13·1 answer
  • Which process is most responsible for the increase in early earths atmospheric oxygen levels
    5·1 answer
  • How does the work needed to lift an object and the gravitational potential energy of an object compare
    7·1 answer
  • A 0.500 kg block of lead is heated from 295 K to 350. K. How much heat was absorbed by the lead? (express your answer to the nea
    14·1 answer
  • A) At a certain instant, a particle-like object is acted on by a force F = (3.0 N) ihat - (3.0 N) jhat + (9.0 N) khat while the
    12·1 answer
  • Give the SI unit. For physics
    12·1 answer
  • A safe weight loss plan recommends a weight loss of no more than __________ pounds per week
    7·2 answers
  • Look at the image and answer the question correctly.
    14·2 answers
  • There are 8 stages to work through in conflict resolution if one is to reach resolution.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!