A is pulling the block straight down toward the center of the Earth, no matter what the slope of the plane may be. A is the force of gravity.
The directions of B and C both depend on the slope of the plane.
B is a force that's parallel to the plane, pulling the block UP the plane. B is the force of friction.
C is a force perpendicular to the plane, preventing the block from falling down through the plane. C is the normal force.
SI will always be in metric, so the answer is D. Meter.
Answer:
The average impact force is 12000 newtons.
Explanation:
By Impact Theorem we know that impact done by the sledge hammer on the chisel is equal to the change in the linear momentum of the former. The mathematical model that represents the situation is now described:
(1)
Where:
- Average impact force, in newtons.
- Duration of the impact, in seconds.
- Mass of the sledge hammer, in kilograms.
,
- Initial and final velocity, in meters per second.
If we know that
,
,
and
, then we estimate the average impact force is:


The average impact force is 12000 newtons.
Answer:
increase.
Explanation:
According to the newton’s second law of motion force is expressed as product of mass and acceleration.
F = m a
If the force acting is constant, then.
m∝ 
That is if the mass of object increases the acceleration decreases and vice versa. The above equation is used when the force acting on the body is constant.
As the thrust force from the rocket engine is constant throughout there will be a variation in the mass or acceleration.
Thus, it won't stay the same.
As the weight of the car is maximum at the start because of the fuel present in the rocket engine and minimum at the end as the fuel burns throughout the journey of the car. Weight will be minimum at the end and hence acceleration is maximum at the end.
Thus, it won't decrease.
As the acceleration is going from minimum at the start to maximum at the end, therefore it is continuously increases throughout its journey.
Thus, it will increase.