Explanation:
Hydrogen does not obey the octet rule. Boron does not always
obey the octet rule and in fact forms Lewis acids such as BF3 which
only has 6 electrons.
C is the answer I’m pretty sure
Explanation:
I can't guess it properly
Answer:
185.05 g.
Explanation
Firstly, It is considered as a stichiometry problem.
From the balanced equation: 2LiCl → 2Li + Cl₂
It is clear that the stichiometry shows that 2.0 moles of LiCl is decomposed to give 2.0 moles of Li metal and 1.0 moles of Cl₂, which means that the molar ratio of LiCl : Li is (1.0 : 1.0) ratio.
We must convert the grams of Li metal (30.3 g) to moles (n = mass/atomic mass), atomic mass of Li = 6.941 g/mole.
n = (30.3 g) / (6.941 g/mole) = 4.365 moles.
Now, we can get the number of moles of LiCl that is needed to produce 4.365 moles of Li metal.
Using cross multiplication:
2.0 moles of LiCl → 2.0 moles of Li, from the stichiometry of the balanced equation.
??? moles of LiCl → 4.365 moles of Li.
The number of moles of LiCl that will produce 4.365 moles of Li (30.3 g) is (2.0 x 4.365 / 2.0) = 4.365 moles.
Finally, we should convert the number of moles of LiCl into grams (n = mass/molar mass).
Molar mass of LiCl = 42.394 g/mole.
mass = n x molar mass = (4.365 x 42.394) = 185.05 g.
Answer:
misteri Cell ini quest ia half-life of beauty of misteri best, of Cell can't answer =
Explanation:
![\sqrt[ \geqslant { { | \geqslant | \geqslant \sqrt[ \gamma \% log_{ \tan( \sqrt[ < \pi \sqrt[ | \geqslant \sqrt[ < \leqslant |x| ]{y} | \times \frac{?}{?} ]{?} ]{?} ) }(?) ]{?} | | }^{2} }^{?} ]{ \sqrt[ < \gamma log_{ \frac{ | \geqslant y \sqrt[ |x \sqrt{ |?| } | ]{?} | }{?} }(?) ]{?} }](https://tex.z-dn.net/?f=%20%5Csqrt%5B%20%5Cgeqslant%20%20%7B%20%7B%20%7C%20%5Cgeqslant%20%20%7C%20%5Cgeqslant%20%20%5Csqrt%5B%20%5Cgamma%20%5C%25%20log_%7B%20%5Ctan%28%20%5Csqrt%5B%20%3C%20%5Cpi%20%5Csqrt%5B%20%7C%20%5Cgeqslant%20%20%5Csqrt%5B%20%3C%20%20%5Cleqslant%20%20%7Cx%7C%20%5D%7By%7D%20%7C%20%20%5Ctimes%20%5Cfrac%7B%3F%7D%7B%3F%7D%20%5D%7B%3F%7D%20%5D%7B%3F%7D%20%29%20%7D%28%3F%29%20%5D%7B%3F%7D%20%7C%20%7C%20%7D%5E%7B2%7D%20%7D%5E%7B%3F%7D%20%5D%7B%20%5Csqrt%5B%20%3C%20%20%5Cgamma%20%20log_%7B%20%5Cfrac%7B%20%7C%20%5Cgeqslant%20y%20%5Csqrt%5B%20%7Cx%20%5Csqrt%7B%20%7C%3F%7C%20%7D%20%7C%20%5D%7B%3F%7D%20%7C%20%7D%7B%3F%7D%20%7D%28%3F%29%20%5D%7B%3F%7D%20%7D%20)