The symbol for xenon (xe) would be a part of the noble gas notation for the element cesium.
For writing the electronic configuration of any element by using the preceding noble gas configuration, we simply use the symbols of noble gas belongs to the previous period of that particular elements. We can't use the symbol of noble gas of same period from which the element belong.
A is the wrong option because the noble gas in the preceding period to the period from which antimony belongs is krypton.
The actual electronic configuration of antimony is as follow:
[Kr] 4d10 5s2 5p3
B is correct option because the noble gas in the preceding period to the period from which Cesium belongs is Xenon.
The actual electronic configuration of Cesium is as follow:
[Xe] 6s1
Thus, we concluded that the symbol for xenon (xe) would be a part of the noble gas notation for the element cesium.
learn more about Noble gas:
brainly.com/question/2094768
#SPJ4
Amino acids are the basic parts of proteins
<span>Various gases and liquids have different densities and combustion points.</span>
I think it might just might be e
Answer:
3.052 × 10^24 particles
Explanation:
To get the number of particles (nA) in a substance, we multiply the number of moles of the substance by Avogadro's number (6.02 × 10^23)
The mass of Li2O given in this question is as follows: 151grams.
To convert this mass value to moles, we use;
moles = mass/molar mass
Molar mass of Li2O = 6.9(2) + 16
= 13.8 + 16
= 29.8g/mol
Mole = 151/29.8g
mole = 5.07moles
number of particles (nA) of Li2O = 5.07 × 6.02 × 10^23
= 30.52 × 10^23
= 3.052 × 10^24 particles.