Answer:
12 moles of CO₂.
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
CO₂ + H₂O —> H₂CO₃
From the balanced equation above,
1 mole of CO₂ dissolves in water to produce 1 mole of H₂CO₃.
Finally, we shall determine the number of moles of CO₂ that will dissolve in water to produce 12 moles of H₂CO₃. This can be obtained as follow:
From the balanced equation above,
1 mole of CO₂ dissolves in water to produce 1 mole of H₂CO₃.
Therefore, 12 moles of CO₂ will also dissolve in water to produce 12 moles of H₂CO₃.
Thus, 12 moles of CO₂ is required.
That is a steep slope for sure, no doubt about it. Hope this helps!
yes through the process of melting
In order to calculate the final concentration of a dilution, it is important to memorise and remember the following equation:
C1V1/C2V2
Where:
C1 = Initial concentration
V1 = Initial volume
C2 = Final concentration
V2 = Final volume
We are given three of the four, and we are asked to calculate the final concentration in moles, so we may substitute these given values into our equation as follows:
C1V1 = C2V2
(2.00m)(50.0 mL) = (C2)(500mL)
100 = C2(500mL)
C2 = 0.2 m
In the final step, we simply divide 100 by 500 to get our final concentration value.
Answer : The rate of consumption of oxygen = 0.245 mol/s
Solution : Given,
Rate at which Hydrogen burns = 0.49 mol/s
The Reaction is,

In this reaction, 2 moles of hydrogen react with the 1 mole of oxygen.
The rate at which oxygen burns is equal to the half of rate at which hydrogen burns.
Rate at which Oxygen burns =
× 0.49 mol/s
= 0.245 mol/s