I think that this is false but I am not sure
Answer:

Explanation:
<u>Instant Acceleration</u>
The kinetic magnitudes are usually related as scalar or vector equations. By doing so, we are assuming the acceleration is constant over time. But when the acceleration is variable, the relations are in the form of calculus equations, specifically using derivatives and/or integrals.
Let f(t) be the distance traveled by an object as a function of the time t. The instant speed v(t) is defined as:

And the acceleration is

Or equivalently

The given height of a projectile is

Let's compute the speed

And the acceleration

It's a constant value regardless of the time t, thus

Answer:
Human activities and natural processes have influenced the change in the global temperature by the following processes
1) Green house gas such as carbon dioxide, methane, ozone, nitrous oxide and fluorinated gases produced by the combustion of fossil fuels the use of industrial chemicals, the production of coal, and natural gas
2) Deforestation which reduces the natural process of conversion of carbon dioxide to oxygen, thereby, increasing the greenhouse gases in the atmosphere
3) The accumulation of the greenhouse gases in the atmosphere results in the trapping of heat in the atmosphere, causing the atmospheric temperature to rise
4) Changes in the amount of energy produced by the Sun can result in an increase or decrease in the atmospheric temperature
5) Volcanic activity that occurs at a sufficiently large scale can produce sulfur dioxide that blocks the rays of the Sun from reaching the Earth, resulting in a change of atmospheric temperature.
Explanation:
Given: Mass of earth Me = 5.98 x 10²⁴ Kg
Radius of earth r = 6.37 x 10⁶ m
G = 6.67 x 10⁻¹¹ N.m²/Kg²
Required: Smallest possible period T = ?
Formula: F = ma; F = GMeMsat/r² Centripetal acceleration ac = V²/r
but V = 2πr/T
equate T from all equation.
F = ma
GMeMsat/r² = Msat4π²/rT²
GMe = 4π²r³/T²
T² = 4π²r³/GMe
T² = 39.48(6.37 x 10⁶ m)³/6.67 x 10⁻¹¹ N.m²/Kg²)(5.98 x 10²⁴ Kg)
T² = 1.02 x 10²² m³/3.99 x 10¹⁴ m³/s²
T² = 25,563,909.77 s²
T = 5,056.08 seconds or around 1.4 Hour