1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
velikii [3]
3 years ago
13

A Michelson interferometer uses red light with a wavelength of 656.45 nm from a hydrogen discharge lamp. Part A How many bright-

dark-bright fringe shifts are observed if mirror M2 is moved 1.7000 cm ? Express your answer using five significant figures.
Physics
1 answer:
kati45 [8]3 years ago
3 0

Answer:

51793 bright-dark-bright fringe shifts are observed when the mirror M2 moves through 1.7cm

Explanation:

The number of maxima appearing when the mirror M moves through distance \Delta L is given as follows,

\Delta m = \frac{\Delta L}{\frac{\lambda}{2}}

Here,

\Delta L= is the distance moved by the mirror M

\lambda is the wavelenght of the light used.

\Delta L= 0.017m

\lambda = 656.45*10^{-9}m

\Delta m = \frac{0.017}{\frac{656.45*10^{-9}}{2}}

\Delta m = 51793.72

Therefore, 51793 bright-dark-bright fringe shifts are observed when the mirror M2 moves through 1.7

You might be interested in
A 117 kg horizontal platform is a uniform disk of radius 1.61 m and can rotate about the vertical axis through its center. A 62.
Ivenika [448]

Answer:

I_syst = 278.41477 kg.m²

Explanation:

Mass of platform; m1 = 117 kg

Radius; r = 1.61 m

Moment of inertia here is;

I1 = m1•r²/2

I1 = 117 × 1.61²/2

I1 = 151.63785 kg.m²

Mass of person; m2 = 62.5 kg

Distance of person from centre; r = 1.05 m

Moment of inertia here is;

I2 = m2•r²

I2 = 62.5 × 1.05²

I2 = 68.90625 kg.m²

Mass of dog; m3 = 28.3 kg

Distance of Dog from centre; r = 1.43 m

I3 = 28.3 × 1.43²

I3 = 57.87067 kg.m²

Thus,moment of inertia of the system;

I_syst = I1 + I2 + I3

I_syst = 151.63785 + 68.90625 + 57.87067

I_syst = 278.41477 kg.m²

8 0
3 years ago
Ask Your Teacher A basketball player shoots toward a basket 5.8 m away and 3.0 m above the floor. If the ball is released 1.7 m
const2013 [10]

Answer:

The answer to your question is    vo = 5.43 m/s

Explanation:

Data

distance = d= 5.8 m

height = 3 m

height 2 = 1.7 m

angle = 60°

vo = ?

g = 9.81 m/s²

Formula

              hmax = vo²sinФ/ 2g

Solve for vo²

              vo² = 2ghmax / sinФ

Substitution

              vo² = 2(9.81)(3 - 1.7) / 0.866

Simplification

              vo² = 19.62(1.3) / 0.866

              vo² = 25.51 / 0.866

              vo² = 29.45

Result

              vo = 5.43 m/s

               

5 0
3 years ago
The membrane that surrounds a certain type of living cell has a surface area of 4.3 x 10-9 m2 and a thickness of 1.1 x 10-8 m. A
Nadusha1986 [10]

Answer:

The charge resides on the outer surface = 1.245 \times 10^{-12} C

Explanation:

Surface area of cell  (A) = 4.3\times 10^{-9}  m^{2}

Separation between two plate  (d) = 1.1 \times 10^{-8}  m  

Dielectric constant (k) = 4.2

Potential difference (\Delta V) = 85.7 \times 10^{-3} V

The capacitance of parallel plate capacitor in free space is given by,

           C = \frac{\epsilon_{o} A }{d}

Where \epsilon_{o}  = permittivity of free space = 8.85 \times 10^{-12}

The Capacitance of capacitor is increase by k times when it placed in dielectric medium.

C_{dielectric}  = \frac{k \epsilon_{o} A }{d}

And we know that, C = \frac{Q}{ \Delta V}

So charge on the outer surface is given by,

      Q = \frac{k \epsilon A \Delta V }{d}

      Q = \frac{4.2 \times 4.3 \times 10^{-9} \times 8.85 \times 10^{-12} \times 85.7\times 10^{-3}   }{1.1 \times 10^{-8} }

      Q = 1.245 \times 10^{-12}

3 0
4 years ago
Of the following transitions in the Bohr hydrogen atom, the ________ transition results in the absorption of the highest-energy
8_murik_8 [283]

Answer:

The <em><u>n = 2 → n = 3</u></em> transition results in the absorption of the highest-energy photon.

Explanation:

E_n=-13.6\times \frac{Z^2}{n^2}ev

Formula used for the radius of the n^{th} orbit will be,

where,

E_n = energy of n^{th} orbit

n = number of orbit

Z = atomic number

Here: Z = 1 (hydrogen atom)

Energy of the first orbit in H atom .

E_1=-13.6\times \frac{Z^2}{1^2} eV=-13.6 eV

Energy of the second orbit in H atom .

E_2=-13.6\times \frac{Z^2}{(2)^2} eV=-3.40 eV

Energy of the third orbit in H atom .

E_3=-13.6\times \frac{Z^2}{(9)^2} eV=-1.51 eV

Energy of the fifth orbit in H atom .

E_5=-13.6\times \frac{Z^2}{(2)^2} eV=-0.544 eV

Energy of the sixth orbit in H atom .

E_6=-13.6\times \frac{Z^2}{(2)^2} eV=-0.378 eV

Energy of the seventh orbit in H atom .

E_7=-13.6\times \frac{Z^2}{(2)^2} eV=-278 eV

During an absorption of energy electron jumps from lower state to higher state.So,  absorption will take place in :

1) n = 2 → n = 3

2) n=  5 → n = 6

Energy absorbed when: n = 2 → n = 3

E=E_3-E_2

E=(-1.51 eV) -(-3.40 eV)=1.89 eV

Energy absorbed when: n = 5 → n = 6

E'=E_6-E_5

E'=(-0.378 eV)-(-0.544 eV) =0.166 eV

1.89 eV > 0.166 eV

E> E'

So,the n = 2 → n = 3 transition results in the absorption of the highest-energy photon.

4 0
3 years ago
ver shines light up to the surface of a flat glass-bottomed boat at an angle of 30 relative to the normal. If the index of refr
Free_Kalibri [48]

Answer:

\beta = 41.68°

Explanation:

according to snell's law

\frac{n_w}{n_g} = \frac{sin\alpha}{sin30 }

refractive index of water n_w is 1.33

refractive index of glass  n_g  is 1.5

sin\alpha = \frac{n_w}{n_g}* sin30

sin\alpha = 0.443

now applying snell's law between air and glass, so we have

\frac{n_g}{n_a} = \frac{sin\alpha}{sin\beta}

sin\beta = \frac{n_g}{n_a} sin\alpha

\beta = sin^{-1} [\frac{n_g}{n_a}*sin\alpha]

we know that sin\alpha = 0.443

\beta = 41.68°

7 0
3 years ago
Other questions:
  • I’m having trouble figuring out how to study for my science test , it’s based off of everything we’ve learned but I’m afraid the
    8·1 answer
  • Explain how earths lithosphere and asthenosphere work together
    6·1 answer
  • When a liquid is cooled, the kinetic energy of the particles ?
    12·1 answer
  • What is mechanical energy​
    13·2 answers
  • A 50.0 kg driver is riding at 35.0 m/s in her red sports car when she must suddenly slam on the brakes to avoid
    15·1 answer
  • Question 3
    6·1 answer
  • How can you increase the gravitational potential energy (GPE) of an empty shoe box on the bottom shelf of a bookcase
    12·2 answers
  • if you drive your car at an average speed of 105km/h, how far (in km) will you go in 3hours 30minutes ?​
    11·1 answer
  • Which of the following is NOT a vector quantity?
    13·1 answer
  • Which dog has the most kinetic energy? A. A dog of mass 12 kg running with speed 6 m/s B. A dog of mass 10 kg running with speed
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!