Agree with the statement buddy
For the answer to the question above, I'll show the solution to my answers
moles C = 82.66 g/ 12.0111 g/mol=6.882
<span>moles H = 17.34 g/ 1.008 g/mol=17.20 </span>
<span>17.20/ 6.882 =2.5 => H </span>
<span>6.882 / 6.882 = 1 => C </span>
<span>to get whole numbers multiply by 2 </span>
<span>C2H5 ( empirical formula Molar mass = 29.062 g/mol) </span>
<span>n = pV/RT = 0.732 x 0.158 L/ 0.08206 x 298 K= 0.00473 </span>
<span>molar mass = 0.275/ 0.00473 =58.1 g/mol </span>
<span>58.1 / 29.062 = 2 </span>
<span>multiply by two the empirical formula </span>
<span>C4H10</span>
I believe the change of state shown in the model is deposition.
Deposition is a process in which gases change phase and turns directly in solids without passing through the liquid phase. It is the opposite of sublimation.
One of the major difference between gases and solids is the distance between molecules; in gases the inter molecular spaces are large, while in solid they are very small, making solids be the most dense, with closely packed molecules. This is evident in the diagram, the phase changed from gases to solids.
Yeah it depends on what mixture
The radius of a chlorine ion is larger than the radius of a chlorine atom because the effective nuclear charge decreases, therefore the inward force decreases, increasing the ionic radius.