Answer:
A. energy transformations
Explanation:
Explanation:
thermal expansion ∝L = (δL/δT)÷L ----(1)
δL = L∝L + δT ----(2)
we have δL = 12.5x10⁻⁶
length l = 200mm
δT = 115°c - 15°c = 100°c
putting these values into equation 1, we have
δL = 200*12.5X10⁻⁶x100
= 0.25 MM
L₂ = L + δ L
= 200 + 0.25
L₂ = 200.25mm
12.5X10⁻⁶ *115-15 * 20
= 0.025
20 +0.025
D₂ = 20.025
as this rod undergoes free expansion at 115°c, the stress on this rod would be = 0
Answer:
a) 0.489
b) 54.42 kg/s
c) 247.36 kW/s
Explanation:
Note that all the initial enthalpy and entropy values were gotten from the tables.
See the attachment for calculations
Answer:
See explaination
Explanation:
Lets first consider the term Isentropic efficiency. The isentropic efficiency of a compressor or pump is defined as the ratio of the work input to an isentropic process, to the work input to the actual process between the same inlet and exit pressures. IN practice, compressors are intentionally cooled to minimize the work input.
Please kindly check attachment for the step by step solution of the given problem.
Question
Determine the average water exit velocity
Answer:
53.05 m/s
Explanation:
Given information
Volume flow rate, 
Diameter d= 8cm= 0.08 m
Assumptions
- The flow is jet flow hence momentum-flux correction factor is unity
- Gravitational force is not considered
- The flow is steady, frictionless and incompressible
- Water is discharged to the atmosphere hence pressure is ignored
We know that Q=AV and making v the subject then
where V is the exit velocity and A is area
Area,
where d is the diameter
By substitution

To convert v to m/s from m/s, we simply divide it by 60 hence
