Answer:
Answer: ±0.02 units or 20±0.02 units or 19.98-20.02 units depending on how they prefer its written (typically the first or second one)
Explanation:
says on the sheet. Unless otherwise stated 0.XX = ±0.02 tolerance
(based on image sent in other post)
Answer:
work=281.4KJ/kg
Power=4Kw
Explanation:
Hi!
To solve follow the steps below!
1. Find the density of the air at the entrance using the equation for ideal gases

where
P=pressure=120kPa
T=20C=293k
R= 0.287 kJ/(kg*K)=
gas constant ideal for air

2.find the mass flow by finding the product between the flow rate and the density
m=(density)(flow rate)
flow rate=10L/s=0.01m^3/s
m=(1.43kg/m^3)(0.01m^3/s)=0.0143kg/s
3. Please use the equation the first law of thermodynamics that states that the energy that enters is the same as the one that must come out, we infer the following equation, note = remember that power is the product of work and mass flow
Work
w=Cp(T1-T2)
Where
Cp= specific heat for air=1.005KJ/kgK
w=work
T1=inlet temperature=20C
T2=outlet temperature=300C
w=1.005(300-20)=281.4KJ/kg
Power
W=mw
W=(0.0143)(281.4KJ/kg)=4Kw
The complete stress distribution obtained by superposing the stresses produced by an axial force and a bending moment is correctly represented by F/A - (My)/(Iz).
<h3>What is the distribution of pressure at some stage in bending?</h3>
Compressive and tensile forces expand withinside the path of the beam axis beneath neath bending loads. These forces set off stresses at the beam. The most compressive pressure is observed on the uppermost fringe of the beam whilst the most tensile pressure is positioned on the decrease fringe of the beam.
The bending pressure is computed for the rail through the equation Sb = Mc/I, wherein Sb is the bending pressure in kilos in keeping with rectangular inch, M is the most bending second in pound-inches, I is the instant of inertia of the rail in (inches)4, and c is the space in inches from the bottom of rail to its impartial axis.
Read more about beam;
brainly.com/question/25329636
#SPJ1
Answer: A fly wheel having a mass of 30kg was allowed to swing as pendulum about a knife edge at inner side of the rim as shown in figure.
Explanation:
Answer:
a) specific impulse = 203 s
(b) mass flow rate = 2511 kg/s
(c) throat diameter = 0.774 m
(d) exit diameter = 1.95 m
(e) thrust = 5.3*10^6 N/m^2
(f) thrust at sea level = 15.6*10^6 N
(g) thrust with hydrogen = 5*10^6 N
(h) thrust with stagnation = 5*10^6 N
Explanation:
See the attached file for explanation.