Answer:
Final mass of Argon= 2.46 kg
Explanation:
Initial mass of Argon gas ( M1 ) = 4 kg
P1 = 450 kPa
T1 = 30°C = 303 K
P2 = 200 kPa
k ( specific heat ratio of Argon ) = 1.667
assuming a reversible adiabatic process
<u>Calculate the value of the M2 </u>
Applying ideal gas equation ( PV = mRT )
P₁V / P₂V = m₁ RT₁ / m₂ RT₂
hence : m2 = P₂T₁ / P₁T₂ * m₁
= (200 * 303 ) / (450 * 219 ) * 4
= 2.46 kg
<em>Note: Calculation for T2 is attached below</em>
Answer:
B. A software development firm needs someone to find and fix bugs on multiple computer platforms.
Explanation:
A software quality assurance engineer is someone who monitors every phase of the software development process so as to ensure design quality, making sure that the software adheres to the standards set by the development company. Finding bugs would make this intern a amazing bug finder
Answer:
number of pulses produced = 162 pulses
Explanation:
give data
radius = 50 mm
encoder produces = 256 pulses per revolution
linear displacement = 200 mm
solution
first we consider here roll shaft encoder on the flat surface without any slipping
we get here now circumference that is
circumference = 2 π r .........1
circumference = 2 × π × 50
circumference = 314.16 mm
so now we get number of pulses produced
number of pulses produced =
× No of pulses per revolution .................2
number of pulses produced =
× 256
number of pulses produced = 162 pulses
Answer:
Maximum number that can be represented by 13 bits is 8192 Instructions
Explanation:
number of instructions = 1000
number of bits = log(1000) x number of register
= 6 bits
Since the complete instruction must have 32 bits, then
remaining number of bits = 32 - 6 = 236
number of registers in instruction = 2
number of bits per register = 26/2 = 13
Maximum number that can be represented by 13 bits = 
= 2¹³ = 8192