Answer:
Given,
Temperature;
T = 393;;K
Convert to Celcius;
T = (393-273) degrees
T = 120°C
Using Table A-4 (Saturated water - Temperature table), at T = 120 C;
vf = 0.001060 m³/kg
vg = 0.89133 m³/kg
Quality is given as;
75% = 0.75
Specific volume is given as;
v = vf + x (vg - vf) = 0.001060 + 0.75(0.89133 _ 0.001060)
v= 0.66876 m³/kg
We know;
v = V/m
0.66876 = 100/m
m = 149.53 kg
Answer:
(b)Distortion energy theory.
Explanation:
The best suitable theory for ductile material:
(1)Maximum shear stress theory (Guest and Tresca theory)
It theory state that applied maximum shear stress should be less or equal to its maximum shear strength.
(2)Maximum distortion energy theory(Von Mises henkey's theory)
It states that maximum shear train energy per unit volume at any point is equal to strain energy per unit volume under the state of uni axial stress condition.
But from these two Best theories ,suitable theory is distortion energy theory ,because it gives best suitable result for ductile material.
Answer:
www stands for world wide web
Explanation:
It will really help you thank you.
Answer: At time 18.33 seconds it will have moved 500 meters.
Explanation:
Since the acceleration of the car is a linear function of time it can be written as a function of time as


Integrating both sides we get

Now since car starts from rest thus at time t = 0 ; v=0 thus c=0
again integrating with respect to time we get

Now let us assume that car starts from origin thus D=0
thus in the first 15 seconds it covers a distance of

Thus the remaining 125 meters will be covered with a constant speed of

in time equalling 
Thus the total time it requires equals 15+3.33 seconds
t=18.33 seconds
Answer:
h = 10,349.06 W/m^2 K
Explanation:
Given data:
Inner diameter = 3.0 cm
flow rate = 2 L/s
water temperature 30 degree celcius




at 30 degree celcius 

Re = 106390
So ,this is turbulent flow



SOLVING FOR H
WE GET
h = 10,349.06 W/m^2 K