Answer:
A precipitation reaction refers to the formation of an insoluble salt when two solutions containing soluble salts are combined. The insoluble salt that falls out of solution is known as the precipitate, hence the reaction's name.
Explanation:
Answer:
0.225 mol = 0.23 mol to 2 significant figures
Explanation:
Calculate the moles of oxygen needed to produce 0.090 mol of water
The equation of the reaction is given as;
2 C2H2 + 5 O2 --> 4 CO2 + 2 H2O
From the equation of the reaction;
5 mol of O2 produces 2 mol of H2O
x mol of O2 produces 0.090 mol of H2O
5 = 2
x = 0.090
x = 0.090 * 5 / 2
x = 0.225 mol
Answer:
A student's name paired with the sport that they play.
Explanation:
<span>Bases and Acids are chemically opposite from each other,and there are multiple ways to distinguish how they react when dissolved in water.
One accepted definition is that an acid is any chemical substance that, when it is dissolved in water, creates a solution with hydrogen ion activity greater than pure/neutral water. That is, it donates a proton to the solution. Any substance with a pH less than 7.0 is an acid, and includes substances such as vinegar and lemon juice.
By comparison, a base is any chemical substance that, when it is dissolved in water, creates a solution in which has hydrogen ion activity less than pure/neutral water. That is, it accepts protons. Any substance with a pH greater than 7.0 is a base, and includes substances such as ammonia and baking soda.</span>
Answer:
(a) 3:2; (b) 2:1
Explanation:
The Law of Multiple Proportions states that when two elements A and B combine to form two or more compounds, the masses of B that combine with a given mass of A are in the ratios of small whole numbers.
That is, if one compound has a ratio r₁ and the other has a ratio r₂, the ratio of the ratios r is in small whole numbers.
(a) Ammonia and hydrazine.
In ammonia, the mass ratio of H:N is r₁ = 0.2158/1
In hydrazine, the mass ratio of H:N is r₂ = 0.1439/1
The ratio of the ratios is:

(b) Nitrogen oxides
In nitrogen monoxide, the mass ratio of O:N is r₁ = 1.142/1
In dinitrogen monoxide, the mass ratio of O:N is r₂ = 0.571/1
The ratio of the ratios is:
