Wait what
What
Huh
Kinda confused
Answer:
<h2>0.2 m/s²</h2>
Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula

f is the force
m is the mass
From the question we have

We have the final answer as
<h3>0.2 m/s²</h3>
Hope this helps you
This represents a primary amine. An amine has a nitrogen group that is connected to three substituents via single bonds. The number of carbon-based substitutents determines whether it is primary, secondary, or tertiary. In this case, since 2 substitutents are just hydrogen atoms, and only one has a carbon-based skeleton, this is a primary amine.
Answer: Option (c) is the correct answer.
Explanation:
A hydrogen bond is defined as a weak bond that is formed between an electropositive atom (generally hydrogen atom) and an electronegative atom like oxygen, nitrogen and fluorine.
An ionic bond is defined as a bond formed between a metal and a non-metal and in this bond transfer of electron takes place from metal to non-metal. And, due to the presence of opposite charges on the combining atoms there exists a strong force of attraction.
Vander waal forces are defined as the weak electric forces which tend to attract neutral molecules towards each other in gases, liquefied and solidified gases.
Vander waal forces are very weak forces.
Thus, we can conclude that Van der walas interactions are weak interactions would require the least amount of energy to disrupt.
Answer:
16.89g of PbBr2
Explanation:
First, let us calculate the number of mole of Pb(NO3)2. This is illustrated below:
Molarity of Pb(NO3)2 = 0.595M
Volume = 77mL = 77/1000 = 0.077L
Mole =?
Molarity = mole/Volume
Mole = Molarity x Volume
Mole of Pb(NO3)2 = 0.595x0.077
Mole of Pb(NO3)2 = 0.046mol
Convert 0.046mol of Pb(NO3)2 to grams as shown below:
Molar Mass of Pb(NO3)2 =
207 + 2[ 14 + (16x3)]
= 207 + 2[14 + 48]
= 207 + 2[62] = 207 +124 = 331g/mol
Mass of Pb(NO3)2 = number of mole x molar Mass = 0.046 x 331 = 15.23g
Molar Mass of PbBr2 = 207 + (2x80) = 207 + 160 = 367g/mol
Equation for the reaction is given below:
Pb(NO3)2 + CuBr2 —> PbBr2 + Cu(NO3)2
From the equation above,
331g of Pb(NO3)2 precipitated 367g of PbBr2
Therefore, 15.23g of Pb(NO3)2 will precipitate = (15.23x367)/331 = 16.89g of PbBr2