The preamble rock is filled with air spaces
2^4/2^7 = 16/128 = 0.125
(1/2)^3= 0.125
1/8= 0.125
a and f are equivalent
<span>You are given two cars, one in front of the other, that are traveling down the highway at 25 m/s. You are also given a frequency of 500 Hz of the car travelling behind it. You are asked what is the frequency heard by the driver of the lead car. This problem can be solved using the Doppler effect
sound frequency heard by the lead car = [(speed of sound + lead car velocity)/( speed of sound + behind car velocity)] * (sound of frequency of the behind car)
</span>sound frequency heard by the lead car = [(340 m/s + 25 m/s)/(340 m/s - 25 m/s)] * (500 Hz)
sound frequency heard by the lead car = 579 Hz
A proton has a positive (1+) charge
Answer:
The two balls meet in 1.47 sec.
Explanation:
Given that,
Height = 25 m
Initial velocity of ball= 0
Initial velocity of another ball = 17 m/s
We need to calculate the ball
Using equation of motion

Where, u = initial velocity
h = height
g = acceleration due to gravity
Put the value in the equation
For first ball
....(I)
For second ball
....(II)
From equation (I) and (II)



Hence, The two balls meet in 1.47 sec.