If its atomic number is 48, then it has 48 protons in the nucleus
of each atom. Any more mass than that is supplied by the neutrons
that are mixed in there with the protons.
If the mass is 167, and 48 of those are protons, then there are
(167 - 48) = 119 neutrons
in each nucleus.
Answer:
Time zone is one important factor in difference in location and this in turn affects the result of the resolution and rotation of shadow produced from the sun or other illumination.
Therefore someone at a place might see a clear large shadow due to shinny sun reflection and another a small or dull Shadow at same time if the intensity of the sun or lighting source is going down.
Explanation:
The closer a body/object is to a lighting source the larger the shadow it produces, and the farther the body the smaller the shadow produced.
The power of man performing 500 J of work in 8 seconds is 62.5 J/s.
Power can be defined as the pace at which work is completed in a given amount of time.
Horsepower is sometimes used to describe the power of motor vehicles and other machinery.
The pace at which work is done on an item is defined as its power. Power is a temporal quantity.
Which is connected to how quickly a project is completed.
The power formula is shown below.
Power = Energy / Time
Power = E / T
Because the standard metric unit for labour is the Joule and the standard metric unit for time is the second, the standard metric unit for power is a Joule / second, defined as a Watt and abbreviated W.
Here we have given Energy as 500 J and Time as 8 second.
Power = Energy / Time
Power = 500 / 8 Joule / sec
Power = 250 / 4 Joule / sec
Power = 125 / 2 Joule / sec
Power = 62.5 Joule / sec or 62.5 watt
Power came out to be 62.5 J/s when the man performed 500 Joule of work in 8 seconds.
So we can conclude that the power in the Energy transmitted per unit of time, and can be find out by dividing Energy by time. In our case the Power came out to be 62.5 Joule / Second.
Learn more about Power here:
brainly.com/question/1634438
#SPJ10
Answer:
Photoelectric-type alarms aim a light source into a sensing chamber at an angle away from the sensor. Smoke enters the chamber, reflecting light onto the light sensor; triggering the alarm.
Explanation:
nfpa.org is the website with theanswer