Answer:
Please find the structure attached as an image
Explanation:
Based on the characteristics ending name (-ene) of the organic compound above, it belongs to the ALKENE GROUP. Alkenes are characterized by the possession of a carbon to carbon double bond (C=C) in their structure.
- But-3-ene tells us that the organic compound has four straight carbon atoms with the C=C (double bond) located on the THIRD carbon depending on if we count from right to left or vice versa.
- 2 methyl indicates that the methyl group (-CH3) is located as an attachment on the second carbon (carbon 2).
N.B: In the structure attached below, the counting is from the left to right (→).
Answer:
is reduced in the reaction
Explanation:
The given reaction is

The oxidation number of
is changed from 

And The oxidation number of
is changed from 

Hence,
is oxidized and
is reduced
C. horizontal
please rank brainliest if possible :)
Answer:
A) Melting
Explanation:
The three changes of phase described in this problem are:
- Melting: melting occurs when a substance in solid state turns into liquid state. Since molecules in liquid state have more energy than molecules in solid state (because in liquids, molecules can slide past each other, while in solids they can't move, but only vibrate), thermal energy must be added in order to melt a substance
- Freezing: freezing occurs when a liquid substance turns into solid state (the opposite of melting). Since molecules in liquid state have more energy than molecules in solid state, thermal energy must be removed from the substance in order to cause freezing
- Condensation: condensation occurs when a gaseous substance turns into liquid state. Since molecules in gaseous state have more energy than molecules in liquid state, thermal energy must be removed from the substance in order to cause condensation
So the correct option is
A) melting
Supercritical mass results to an increase in the rate of fission. There is a chain reaction that will occur. Nuclear fission or explosion used in atomic bombs relies on supercritical mass. An atom splits into two, with each splitting into two pairs and so on, releasing energy in each step.