Answer:
<h2>x = 2 </h2><h2>y = - 3</h2><h2>z = - 2</h2>
Step-by-step explanation:
6y - 5z = -8 .......... Equation 1
3z = -6 ................... Equation 2
4x - 3y - 2z= 21...... Equation 3
<u>First solve for z in Equation 2</u>
That's
3z = - 6
Divide both sides by 3
<h3>z = - 2</h3>
Next substitute the value of z into Equation 1 in order to find y
We have
6y - 5(-2) = - 8
6y + 10 = - 8
6y = - 8 - 10
6y = - 18
Divide both sides by 6
<h3>y = - 3</h3>
Finally substitute the values of y and z into Equation 3 to find the value of x
That's
4x - 3(-3) - 2(-2) = 21
4x + 9 + 4 = 21
4x + 13 = 21
4x = 21 - 13
4x = 8
Divide both sides by 4
<h3>x = 2</h3>
So the solutions are
<h3>x = 2 </h3><h3>y = - 3</h3><h3>z = - 2</h3>
Hope this helps you
Answer:
a) strong negative linear correlation.
b) Weak or no linear correlation.
c) strong positive linear correlation.
Step-by-step explanation:
The correlation coefficient r measures the strength and direction (positive or negative) of two variables. The correlation coefficient r is always between -1 and 1. When the coefficient r is negative then the direction of the correlation is downhill (negative) and when it's positive then it's an uphill correlation (positive). Similarly, as the coefficient is closer to -1 or 1 the correlation is stronger, with zero being a non linear relationship.
Now back to the question:
a) Near -1: as we said before, this means an strong negative (-1) linear correlation.
b) Near 0: weak or no linear correlation (we cannot say if its positive or negative because we don't know it it's near zero from the right (positive numbers) or the left (negative numbers)
c) Near 1: strong positive (close to +1) linear correlation
Answer: Q=1.79
Step-by-step explanation: Move 0.63 to the right and add both numbers then calculate it. So Q=1.79