Answer:
3) Ep = 13243.5[J]
4) v = 17.15 [m/s]
Explanation:
3) In order to solve this problem, we must use the principle of energy conservation. That is, the energy will be transformed from potential energy to kinetic energy. We can calculate the potential energy with the mass and height data, as shown below.
m = mass = 90 [kg]
h = elevation = 15 [m]
Potential energy is defined as the product of mass by gravity by height.
![E_{p}=m*g*h\\E_{p}=90*9.81*15\\E_{p}=13243.5[J]](https://tex.z-dn.net/?f=E_%7Bp%7D%3Dm%2Ag%2Ah%5C%5CE_%7Bp%7D%3D90%2A9.81%2A15%5C%5CE_%7Bp%7D%3D13243.5%5BJ%5D)
This energy will be transformed into kinetic energy.
Ek = 13243.5 [J]
4) The velocity can be determined by defining the kinetic energy, as shown below.
![E_{k}=\frac{1}{2} *m*v^{2} \\v = \sqrt{\frac{2*E_{k} }{m} }\\ v= \sqrt{\frac{2*13243.5 }{90} }\\v=17.15[m/s]](https://tex.z-dn.net/?f=E_%7Bk%7D%3D%5Cfrac%7B1%7D%7B2%7D%20%2Am%2Av%5E%7B2%7D%20%20%5C%5Cv%20%3D%20%5Csqrt%7B%5Cfrac%7B2%2AE_%7Bk%7D%20%7D%7Bm%7D%20%7D%5C%5C%20v%3D%20%5Csqrt%7B%5Cfrac%7B2%2A13243.5%20%7D%7B90%7D%20%7D%5C%5Cv%3D17.15%5Bm%2Fs%5D)
Answer:
V = 20 miles /sec
Explanation:
We have remaining distance = d = 96 miles
Lets call Pascal velocity V in miles per hour
Now if he increases his velocity by 50 % (equivalent to multiply by 1.5 ) he will need a time t₁ to arrive then as V = d/t
1.5* V = d/ t₁ ⇒ 1.5 * V = 96 /t₁
And in the case of reducing his velocity
(V / 4) = d/ (t₁ + 16 ) ⇒ V * (t₁ + 16 ) = 4*d ⇒ V*t₁ + 16*V = 384
So we a 2 equation system with two uknown variables
1.5*V = 96/t₁ (1)
V*t₁ + 16*V = 384 (2)
We solve from equation (1) t₁ = 64/V
And by substitution in equation (2)
V * (64/V) + 16* V = 384
64 + 16 *V = 384 ⇒ 16*V = 320 ⇒ V= 320/16
V = 20 miles /sec
The things that a scientist should consider while observing
the force is the environmental conditions,the force that is expected to act on
the dam, the means to contain that force,
and compare different types of designs in accordance with the location
of the dam
Answer:
Most interstellar clouds are much bigger than our solar system.
Explanation:
An interstellar cloud refers:
- It is generally an accumulation of gas, plasma, and dust in our and other galaxies.
- It is basically a denser-than-average region of the interstellar medium (ISM).
Interstellar clouds can be large up to 106 solar masses
It is also often said to be the most massive entities in the galaxy.
Hence
we can say about Interstellar clouds,
They are much bigger than our solar system.
learn more about interstellar clouds here:
<u>brainly.com/question/14726563</u>
<u />
#SPJ4