Answer: 0.20 M
Explanation:
According to the dilution law,

where,
= molarity of stock solution = 1.40 M
= volume of stock solution = 72.0 ml
= molarity of diluted solution = m
= volume of diluted solution = 248 ml


Now 124 mL portion of this prepared solution is diluted by adding 133 mL of water.
According to the dilution law,

where,
= molarity of stock solution = 0.41 M
= volume of stock solution = 124 ml
= molarity of diluted solution = m
= volume of diluted solution = (124 +133) ml = 257 ml


Thus the final concentration of the solution is 0.20 M.
Answer: Rubber source, temperature, thinkness, thread design, driving pattenrs, weather, etc.
Explanation: There are many variables. Here are a few I would include in a tire lifetime study:
1. Type of rubber, including source
2. Thickness of tire
3. Design of tire thread
4. Life as a function of average speed and road surface
5. Expected outside temperature and wet conditions
6. Driving conditions of speed and both acceleration and deceleration parameters (e.g., tire life when slamming on the brakes or accelerating quickly)
Answer:
1) Test tube 3, and 1.
2) Test tube 4, and 2.
3) Test tube 3.
4) Test tube 1.
Explanation:
Test tubes 4, and 2 don't react because the sodium carbonate (NaCO3) needs to become sodium hydrogen carbon (NaHCO3) to form a possible reaction. NaCO3 + C6H8O7 → No reaction.
NaHCO3 + C6H8O7 → NaC6H7O7 + H2O + CO2
Answer:
0.58 atm
Explanation:
Step 1: Given data
- Total pressure of the gaseous mixture (P): 1.05 atm
- Partial pressure of N₂ (pN₂): 0.35 atm
- Partial pressure of H₂ (pH₂): 0.12 atm
- Partial pressure of CO₂ (pCO₂): ?
Step 2: Calculate the partial pressure of CO₂
The total pressure of the gaseous mixture is equal to the sum of the partial pressures of the individual gases.
P = pN₂ + pO₂ + pCO₂
pCO₂ = P - pN₂ - pO₂
pCO₂ = 1.05 atm - 0.35 atm - 0.12 atm = 0.58 atm
Answer: C. the same amount of energy as
Explanation:
A reversible reaction is a chemical reaction where the reactants form products that, in turn, react together to give the reactants back.
Reversible reactions will reach an equilibrium point where the concentrations of the reactants and products will no longer change.

Thus if forward reaction is exothermic i.e. the heat is released , the backward reaction will be endothermic i.e. the heat is absorbed and in same amount.
The amount of energy released will be equal and opposite in sign to the energy absorbed in that reaction.