Answer: -
3.151 M
Explanation: -
Let the volume of the solution be 1000 mL.
At 25.0 °C, Density = 1.260 g/ mL
Mass of the solution = Density x volume
= 1.260 g / mL x 1000 mL
= 1260 g
At 25.0 °C, the molarity = 3.179 M
Number of moles present per 1000 mL = 3.179 mol
Strength of the solution in g / mol
= 1260 g / 3.179 mol = 396.35 g / mol (at 25.0 °C)
Now at 50.0 °C
The density is 1.249 g/ mL
Mass of the solution = density x volume = 1.249 g / mL x 1000 mL
= 1249 g.
Number of moles present in 1249 g = Mass of the solution / Strength in g /mol
= 
= 3.151 moles.
So 3.151 moles is present in 1000 mL at 50.0 °C
Molarity at 50.0 °C = 3.151 M
6 electrons... 's' can hold 2..... 'd' can hold 10 and 'f' can hold 14
Answer:
B
Explanation:
Atomic # = Protons
it says 4 p in the inside of the orbital
1. The molar mass of Fe2(CO3)3 is 291.72 g/mol. This means that 45.6 g is equivalent to 0.156 mol. Dividing by the 0.167 L of water gives a solution of 0.936 M.
2. Multiplying (0.672 M)(0.025 L) = 0.0168 mol. The molar mass of Ni(OH)2 is 92.71 g/mol, so multiplying by 0.0168 mol = 1.56 grams. Therefore you would need to dissolved 1.56 g of Ni(OH)2 into 25 mL of water.
3. Fe2(CO3)3 + Ni(OH)2 --> Fe(OH)3 + NiCO3Balancing: Fe2(CO3)3 + 3Ni(OH)2 --> 2Fe(OH)3 + 3NiCO3The reaction quotient is:[Fe(OH)3]^2 * [NiCO3]^3 / [Fe2(CO3)3][Ni(OH)2]^3= (0.05)^2 * (1.45)^3 / (0.936)(0.672)^3= 0.0268Since this is < 1, it implies that the reactants are favored at equilibrium.