1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aleksley [76]
3 years ago
5

QUICK HELP PLEASE!!?? Need answer QUICK

Chemistry
2 answers:
aleksandr82 [10.1K]3 years ago
5 0

Answer:

B. unsaturated

C. saturated

D. Cannot be determined

Explanation:

d1i1m1o1n [39]3 years ago
4 0

Answer:

B

Explanation:

Look on the x-axis for the tick marked "60". This indicates 60 degrees Celsius, which we want. Now, look on the y-axis for the tick marked "60". This indicates 60 grams of Na_2HAsO_4. Trace along the graph to find where these two places meet at (60, 60).

Now, look for the solubility curve of Na_2HAsO_4; it's the yellow-orange line. Find out what the y-coordinate of the point where x = 60 is on the line: it's around (60, 65).

So, since the point (60, 60) is below the line corresponding to this substance, Na_2HAsO_4 is unsaturated.

The answer is B.

You might be interested in
ANSWER THE QUESTION BELOW FOR BRAINLEST AND 10 POINTS
Katarina [22]
C :) shshdjehwjdjdjsjsjsbsbbsdp
5 0
3 years ago
Read 2 more answers
Can someone please help me please?
vekshin1

Answer:

The sum of the molar masses of each isotope of the element.

7 0
3 years ago
Read 2 more answers
The table lists the chemical formulas or symbols of a few common substances. Which two substances are compounds? A) aluminum and
katrin [286]
D is the correct answer

every other option contains an element
7 0
3 years ago
Read 2 more answers
Consider the titration of 100.0 mL of 0.280 M propanoic acid (Ka = 1.3 ✕ 10−5) with 0.140 M NaOH. Calculate the pH of the result
Murljashka [212]

Answer:

(a) 2.7

(b) 4.44

(c) 4.886

(d) 5.363

(e) 5.570

(f)  12.30

Explanation:

Here we have the titration of a weak acid with the strong base NaOH. So in part (a) simply calculate the pH of a weak acid ; in the other parts we have to consider that a buffer solution will be present after some of the weak acid reacts completely the strong base producing the conjugate base. We may even arrive to the situation in which all of the acid will be just consumed and have only  the weak base present in the solution treating it as the pOH and the pH = 14 -pOH. There is also the possibility that all of the weak base will be consumed and then the NaOH will drive the pH.

Lets call HA propanoic acid and A⁻ its conjugate base,

(a) pH = -log √ (HA) Ka =-log √(0.28 x 1.3 x 10⁻⁵) = 2.7

(b) moles reacted HA = 50 x 10⁻³ L x 0.14 mol/L = 0.007 mol

mol left HA = 0.28 - 0.007 = 0.021

mol A⁻ produced = 0.007

Using the Hasselbalch-Henderson equation for buffer solutions:

pH = pKa + log ((A⁻/)/(HA)) = -log (1.3 x 10⁻⁵) + log (0.007/0.021)= 4.89 + (-0.48) = 4.44

(c) = mol HA reacted = 0.100 L x 0.14 mol/L = 0.014 mol

mol HA left = 0.028 -0.014 = 0.014 mol

mol A⁻ produced = 0.014

pH = -log (1.3 x 10⁻⁵) + log (0.014/0.014) =  4.886

(d) mol HA reacted = 150 x 10⁻³ L  x  x 0.14 mol/L = 0.021 mol

mol HA left = 0.028 - 0.021 = 0.007

mol A⁻ produced = 0.021

pH = -log (1.3 x 10⁻⁵) + log (0.021/0.007) =  5.363

(e) mol HA reacted = 200 x 10⁻³ L x 0.14 mol/L = 0.028 mol

mol HA left = 0

Now we only a weak base present and its pH is given by:

pH  = √(kb x (A⁻)  where Kb= Kw/Ka

Notice that here we will have to calculate the concentration of A⁻ because we have dilution effects the moment we added to the 100 mL of HA,  200 mL of NaOH 0.14 M. (we did not need to concern ourselves before with this since the volumes cancelled each other in the previous formulas)

mol A⁻ = 0.028 mOl

Vol solution = 100 mL + 200 mL = 300 mL

(A⁻) = 0.028 mol /0.3 L = 0.0093 M

and we also need to calculate the Kb for the weak base:

Kw = 10⁻¹⁴ = ka Kb ⇒   Kb = 10⁻¹⁴/1.3x 10⁻⁵ = 7.7 x 10⁻ ¹⁰

pH = -log (√( 7.7 x 10⁻ ¹⁰ x 0.0093) = 5.570

(f) Treat this part as a calculation of the pH of a strong base

moles of OH = 0.250 L x 0.14 mol = 0.0350 mol

mol OH remaining = 0.035 mol - 0.028 reacted with HA

= 0.007 mol

(OH⁻) = 0.007 mol / 0.350 L = 2.00 x 10 ⁻²

pOH = - log (2.00 x 10⁻²) = 1.70

pH = 14 - 1.70 = 12.30

4 0
3 years ago
35 Before the discovery of oxygen some scientists had a different theory about burning.
skad [1K]

Answer:

<h2>B i have to search it like 23 hours to find it but Thank you for sharing your question :)</h2>
3 0
3 years ago
Read 2 more answers
Other questions:
  • Specific heat is the heat capacity of an object divided by its mass in grams.
    15·2 answers
  • 2. Which electron dot structure represents a nonpolar molecule?
    8·1 answer
  • What element is located in group 2, period 2?
    5·1 answer
  • Plant cell organelle
    5·1 answer
  • Identify the tropical zones and the temperate zones
    8·2 answers
  • Which types of reactions would result in the formation of precipitate?
    10·1 answer
  • What is a chemical reaction that absorbs heat called?
    15·2 answers
  • The student then takes a 1.00M stock solution of table sugar (sucrose C12H22O11) and mixes 0.305L of stock solution with additio
    12·1 answer
  • How many moles are in 3.0x10^24 molecules of water​
    5·2 answers
  • Help me please will give brainliest
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!