Explanation :
It is given that, the driver accelerates from a stop sign, cruises for 20 s at a constant speed of 60 km/h, and then brakes to come to a stop 40 s after leaving the stop sign.
We know that acceleration is defined as the rate of change of velocity.

Where
dv is the change in velocity, dv = 0 - 60 m/s = -60 m/s
dt is the change in time, dt = 40 s - 30 s = 10 s
So, 

From the graph it is clear that, from 30 s to 40 s the car is decelerating. So, at every second within this time the value of acceleration will be same i.e.
.
Well, st first we should find <span>initial momentum for the first person represented in the task which definitely must be :
</span>

And then we find the final one :

Then equate them together :
So we can get the velocity, which is

In that way, according to the main rules of <span>conservation of momentum you can easily find the solution for the second person.
Regards!</span>
Answer: At that moment, all the baseball's kinetic energy has been converted to potential energy.
Explanation: I took the test
Answer:
This happens in two ways. If an object is at rest and an unbalanced force pushes or pulls the object, it will move. Unbalanced forces can also change the speed or direction of an object that is already in motion.
Explanation:
Answer:
Option C and D only
Explanation:
Option A is incorrect because refractive index of a material is the ratio of speed of light in vacuum to the speed of light in a any given medium
Option B is correct as the speed of light in vacuum is always greater than the speed of light in any given medium.
Option C is correct
Option D is incorrect
Option E is incorrect because the denser the medium the more is the refractive index. Water is denser than air, hence it should have more refractive index as compared to that of air.